一篇文章透彻解读聚类分析及案例实操(二)
4 SAS聚类分析案例
1 问题背景
考虑下面案例,一个棒球管理员希望根据队员们的兴趣相似性将他们进行分组。显然,在该例子中,没有响应变量。管理者希望能够方便地识别出队员的分组情况。同时,他也希望了解不同组之间队员之间的差异性。
该案例的数据集是在SAMPSIO库中的DMABASE数据集。下面是数据集中的主要的变量的描述信息:
在这个案例中,设置TEAM,POSITION,LEAGUE,DIVISION和SALARY变量的模型角色为rejected,设置SALARY变量的 模型角色为rejected是由于它的信息已经存储在LOGSALAR中。在聚类分析和自组织映射图中是不需要目标变量的。如果需要在一个目标变量上识别 分组,可以考虑预测建模技术或者定义一个分类目标。
2 聚类方法概述
聚类分析经常和有监督分类相混淆,有监督分类是为定义的分类响应变量预测分组或者类别关系。而聚类分析,从另一方面考虑,它是一种无监督分类技术。 它能够在所有输入变量的基础上识别出数据集中的分组和类别信息。这些组、簇,赋予不同的数字。然而,聚类数目不能用来评价类别之间的近似关系。自组织映射 图尝试创建聚类,并且在一个图上用图形化的方式绘制出聚类信息,在此处我们并没有考虑。
1) 建立初始数据流
2) 设置输入数据源结点
打开输入数据源结点
从SAMPSIO库中选择DMABASE数据集
设置NAME变量的模型角色为id,TEAM,POSIOTION,LEAGUE,DIVISION和SALARY变量的模型角色为rejected
探索变量的分布和描述性统计信息
选择区间变量选项卡,可以观察到只有LOGSALAR和SALARY变量有缺失值。选择类别变量选项卡,可以观察到没有缺失值。在本例中,没有涉及到任何类别变量。
关闭输入数据源结点,并保存信息。
3) 设置替代结点
虽然并不是总是要处理缺失值,但是有时候缺失值的数量会影响聚类结点产生的聚类解决方案。为了产生初始聚类,聚类结点往往需要一些完整的观测值。当缺失值太多的时候,需要用替代结点来处理。虽然这并不是必须的,但是在本例中使用到了。
4) 设置聚类结点
打开聚类结点,激活变量选项卡。K-means聚类对输入数据是敏感的。一般情况下,考虑对数据集进行标准化处理。
在变量选项卡,选择标准偏差单选框
选择聚类选项卡
观察到默认选择聚类数目的方法是自动的
关闭聚类结点
5) 聚类结果
在聚类结点处运行流程图,查看聚类结果。
6) 限定聚类数目
打开聚类结点
选择聚类选项卡
在聚类数目选择部分,点击选择标准按钮
输入最大聚类数目为10
点击ok,关闭聚类结点
7)结果解释
我们可以定义每个类别的信息,结合背景识别每个类型的特征。选择箭头按钮,
选择三维聚类图的某一类别,
在工具栏选择刷新输入均值图图标,
点击该图标,可以查看该类别的规范化均值图
同理,可以根据该方法对其他类别进行解释。
8)运用Insight结点
Insight结点可以用来比较不同属性之间的异常。打开insight结点,选择整个数据集,关闭结点。
从insight结点处运行。
变量_SEGMNT_标识类别,distance标识观测值到所在类别中心的距离。运用insight窗口的analyze工具评估和比较聚类结果。
首先把_SEGMNT_的度量方式从interval转换成nominal。
以R基础包自带的鸢尾花(Iris)数据进行聚类分析。分析代码如下:
###### 代码清单 #######
data(iris); attach(iris)
iris.hc <- hclust( dist(iris[,1:4]))
# plot( iris.hc, hang = -1)
plclust( iris.hc, labels = FALSE, hang = -1)
re <- rect.hclust(iris.hc, k = 3)
iris.id <- cutree(iris.hc, 3)
table(iris.id, Species)
###### 运行结果 #######
> table(iris.id,Species)
Species
iris.id setosa versicolor virginica
1 50 0 0
2 0 23 49
3 0 27 1
聚类分析生成的图形如下:
结果表明,函数cuttree()将数据iris分类结果iris.hc编为三组分别以1,2, 3表示,保存在iris.id中。将iris.id与iris中Species作比较发现:1应该是setosa类,2应该是virginica类(因为 virginica的个数明显多于versicolor),3是versicolor。
仍以R基础包自带的鸢尾花(Iris)数据进行K-均值聚类分析,分析代码如下:
###### 代码清单 #######
library(fpc)
data(iris)
df<-iris[,c(1:4)]
set.seed(252964) # 设置随机值,为了得到一致结果。
(kmeans <- kmeans(na.omit(df), 3)) # 显示K-均值聚类结果
plotcluster(na.omit(df), kmeans$cluster) # 生成聚类图
生成的图如下:
Python篇
Python运行条件:
1.Python运行环境与编辑环境;
2.Matplotlib.pyplot图形库,可用于快速绘制2D图表,与matlab中的plot命令类似,而且用法也基本相同。
# coding=utf-8
##
作者:Chan
程序:kmeans算法
##
import matplotlib.pyplot as plt
import math
import numpy
import random
#dotOringalNum为各个分类最初的大小
dotOringalNum=100
#dotAddNum最后测试点的数目
dotAddNum=1000
fig = plt.figure()
ax = fig.add_subplot(111)
sets=
colors=[‘b’,’g’,’r’,’y’]
#第一个分类,颜色为蓝色,在左下角
a=
txx=0.0
tyy=0.0
for i in range(0,dotOringalNum):
tx=float(random.randint(1000,3000))/100
ty=float(random.randint(1000,3000))/100
a.append([tx,ty])
txx+=tx
tyy+=ty
#ax.plot([tx],[ty],color=colors[0],linestyle=”,marker=’.’)
#a的第一个元素为a的各个元素xy值之合
a.insert(0,[txx,tyy])
sets.append(a)
#第二个分类,颜色为绿色,在右上角
b=
txx=0.0
tyy=0.0
for i in range(0,dotOringalNum):
tx=float(random.randint(4000,6000))/100
ty=float(random.randint(4000,6000))/100
b.append([tx,ty])
txx+=tx
tyy+=ty
#ax.plot([tx],[ty],color=colors[1],linestyle=”,marker=’.’)
b.insert(0,[txx,tyy])
sets.append(b)
#第三个分类,颜色为红色,在左上角
c=
txx=0.0
tyy=0.0
for i in range(0,dotOringalNum):
tx=float(random.randint(1000,3000))/100
ty=float(random.randint(4000,6000))/100
c.append([tx,ty])
txx+=tx
tyy+=ty
#ax.plot([tx],[ty],color=colors[2],linestyle=”,marker=’.’)
c.insert(0,[txx,tyy])
sets.append(c)
#第四个分类,颜色为黄色,在右下角
d=
txx=0
tyy=0
for i in range(0,dotOringalNum):
tx=float(random.randint(4000,6000))/100
ty=float(random.randint(1000,3000))/100
d.append([tx,ty])
txx+=tx
tyy+=ty
#ax.plot([tx],[ty],color=colors[3],linestyle=”,marker=’.’)
d.insert(0,[txx,tyy])
sets.append(d)
#测试
for i in range(0,dotAddNum):
tx=float(random.randint(0,7000))/100
ty=float(random.randint(0,7000))/100
dist=9000.0
setBelong=0
for j in range(0,4):
length=len(sets[j])-1
centX=sets[j][0][0]/length
centY=sets[j][0][1]/length
if (centX-tx)*(centX-tx)+(centY-ty)*(centY-ty)
运行效果:
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16