
一篇文章透彻解读聚类分析及案例实操(二)
4 SAS聚类分析案例
1 问题背景
考虑下面案例,一个棒球管理员希望根据队员们的兴趣相似性将他们进行分组。显然,在该例子中,没有响应变量。管理者希望能够方便地识别出队员的分组情况。同时,他也希望了解不同组之间队员之间的差异性。
该案例的数据集是在SAMPSIO库中的DMABASE数据集。下面是数据集中的主要的变量的描述信息:
在这个案例中,设置TEAM,POSITION,LEAGUE,DIVISION和SALARY变量的模型角色为rejected,设置SALARY变量的 模型角色为rejected是由于它的信息已经存储在LOGSALAR中。在聚类分析和自组织映射图中是不需要目标变量的。如果需要在一个目标变量上识别 分组,可以考虑预测建模技术或者定义一个分类目标。
2 聚类方法概述
聚类分析经常和有监督分类相混淆,有监督分类是为定义的分类响应变量预测分组或者类别关系。而聚类分析,从另一方面考虑,它是一种无监督分类技术。 它能够在所有输入变量的基础上识别出数据集中的分组和类别信息。这些组、簇,赋予不同的数字。然而,聚类数目不能用来评价类别之间的近似关系。自组织映射 图尝试创建聚类,并且在一个图上用图形化的方式绘制出聚类信息,在此处我们并没有考虑。
1) 建立初始数据流
2) 设置输入数据源结点
打开输入数据源结点
从SAMPSIO库中选择DMABASE数据集
设置NAME变量的模型角色为id,TEAM,POSIOTION,LEAGUE,DIVISION和SALARY变量的模型角色为rejected
探索变量的分布和描述性统计信息
选择区间变量选项卡,可以观察到只有LOGSALAR和SALARY变量有缺失值。选择类别变量选项卡,可以观察到没有缺失值。在本例中,没有涉及到任何类别变量。
关闭输入数据源结点,并保存信息。
3) 设置替代结点
虽然并不是总是要处理缺失值,但是有时候缺失值的数量会影响聚类结点产生的聚类解决方案。为了产生初始聚类,聚类结点往往需要一些完整的观测值。当缺失值太多的时候,需要用替代结点来处理。虽然这并不是必须的,但是在本例中使用到了。
4) 设置聚类结点
打开聚类结点,激活变量选项卡。K-means聚类对输入数据是敏感的。一般情况下,考虑对数据集进行标准化处理。
在变量选项卡,选择标准偏差单选框
选择聚类选项卡
观察到默认选择聚类数目的方法是自动的
关闭聚类结点
5) 聚类结果
在聚类结点处运行流程图,查看聚类结果。
6) 限定聚类数目
打开聚类结点
选择聚类选项卡
在聚类数目选择部分,点击选择标准按钮
输入最大聚类数目为10
点击ok,关闭聚类结点
7)结果解释
我们可以定义每个类别的信息,结合背景识别每个类型的特征。选择箭头按钮,
选择三维聚类图的某一类别,
在工具栏选择刷新输入均值图图标,
点击该图标,可以查看该类别的规范化均值图
同理,可以根据该方法对其他类别进行解释。
8)运用Insight结点
Insight结点可以用来比较不同属性之间的异常。打开insight结点,选择整个数据集,关闭结点。
从insight结点处运行。
变量_SEGMNT_标识类别,distance标识观测值到所在类别中心的距离。运用insight窗口的analyze工具评估和比较聚类结果。
首先把_SEGMNT_的度量方式从interval转换成nominal。
以R基础包自带的鸢尾花(Iris)数据进行聚类分析。分析代码如下:
###### 代码清单 #######
data(iris); attach(iris)
iris.hc <- hclust( dist(iris[,1:4]))
# plot( iris.hc, hang = -1)
plclust( iris.hc, labels = FALSE, hang = -1)
re <- rect.hclust(iris.hc, k = 3)
iris.id <- cutree(iris.hc, 3)
table(iris.id, Species)
###### 运行结果 #######
> table(iris.id,Species)
Species
iris.id setosa versicolor virginica
1 50 0 0
2 0 23 49
3 0 27 1
聚类分析生成的图形如下:
结果表明,函数cuttree()将数据iris分类结果iris.hc编为三组分别以1,2, 3表示,保存在iris.id中。将iris.id与iris中Species作比较发现:1应该是setosa类,2应该是virginica类(因为 virginica的个数明显多于versicolor),3是versicolor。
仍以R基础包自带的鸢尾花(Iris)数据进行K-均值聚类分析,分析代码如下:
###### 代码清单 #######
library(fpc)
data(iris)
df<-iris[,c(1:4)]
set.seed(252964) # 设置随机值,为了得到一致结果。
(kmeans <- kmeans(na.omit(df), 3)) # 显示K-均值聚类结果
plotcluster(na.omit(df), kmeans$cluster) # 生成聚类图
生成的图如下:
Python篇
Python运行条件:
1.Python运行环境与编辑环境;
2.Matplotlib.pyplot图形库,可用于快速绘制2D图表,与matlab中的plot命令类似,而且用法也基本相同。
# coding=utf-8
##
作者:Chan
程序:kmeans算法
##
import matplotlib.pyplot as plt
import math
import numpy
import random
#dotOringalNum为各个分类最初的大小
dotOringalNum=100
#dotAddNum最后测试点的数目
dotAddNum=1000
fig = plt.figure()
ax = fig.add_subplot(111)
sets=
colors=[‘b’,’g’,’r’,’y’]
#第一个分类,颜色为蓝色,在左下角
a=
txx=0.0
tyy=0.0
for i in range(0,dotOringalNum):
tx=float(random.randint(1000,3000))/100
ty=float(random.randint(1000,3000))/100
a.append([tx,ty])
txx+=tx
tyy+=ty
#ax.plot([tx],[ty],color=colors[0],linestyle=”,marker=’.’)
#a的第一个元素为a的各个元素xy值之合
a.insert(0,[txx,tyy])
sets.append(a)
#第二个分类,颜色为绿色,在右上角
b=
txx=0.0
tyy=0.0
for i in range(0,dotOringalNum):
tx=float(random.randint(4000,6000))/100
ty=float(random.randint(4000,6000))/100
b.append([tx,ty])
txx+=tx
tyy+=ty
#ax.plot([tx],[ty],color=colors[1],linestyle=”,marker=’.’)
b.insert(0,[txx,tyy])
sets.append(b)
#第三个分类,颜色为红色,在左上角
c=
txx=0.0
tyy=0.0
for i in range(0,dotOringalNum):
tx=float(random.randint(1000,3000))/100
ty=float(random.randint(4000,6000))/100
c.append([tx,ty])
txx+=tx
tyy+=ty
#ax.plot([tx],[ty],color=colors[2],linestyle=”,marker=’.’)
c.insert(0,[txx,tyy])
sets.append(c)
#第四个分类,颜色为黄色,在右下角
d=
txx=0
tyy=0
for i in range(0,dotOringalNum):
tx=float(random.randint(4000,6000))/100
ty=float(random.randint(1000,3000))/100
d.append([tx,ty])
txx+=tx
tyy+=ty
#ax.plot([tx],[ty],color=colors[3],linestyle=”,marker=’.’)
d.insert(0,[txx,tyy])
sets.append(d)
#测试
for i in range(0,dotAddNum):
tx=float(random.randint(0,7000))/100
ty=float(random.randint(0,7000))/100
dist=9000.0
setBelong=0
for j in range(0,4):
length=len(sets[j])-1
centX=sets[j][0][0]/length
centY=sets[j][0][1]/length
if (centX-tx)*(centX-tx)+(centY-ty)*(centY-ty)
运行效果:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10