闲暇的时候,我最喜欢去书店“游览”。书的内容姑且不说,光是花花绿绿的封面,就常引我流连忘返。这一次,两本书的封面格外吸引我的眼球。
一个封面的图案是一只跳舞的大象,前腿腾空,竖直向上的长鼻子冒出五颜六色的电线(导线),书名是《大数据——一场即将改变我们生活、工作和思维方式的革命》。另一个封面的图案是英国画家约瑟夫·怀特画于1766年的一幅油画,画面内容是一位哲学家正在讲解太阳系,讲解人严肃认真,听众神情专注,代替太阳的烛光将两名求知儿童的脸庞照得亮堂堂,书名是《启蒙思想——为什么它依然重要》。
《大数据》的封面构图是说,数字化时代的数据非常大,大得就像动物世界的一头大象。而大象却要翩翩起舞,预示着一场数据化革命即将到来。《启蒙思想》的封面通俗易懂,日心说推翻了地心说,启蒙思想恰似普照大地的阳光,引导人们走向光明。
2008年世界经济危机爆发后,全球经济时好时坏,蹒跚跌撞地折腾到现在。有人说,5年来,世界经济犹如在黑暗中跋涉,偶现曙光却转瞬即逝。全世界人民都很焦急,盼望新经济模式助推经济发展。现在,大数据喧嚣登场了,似乎可以将世界经济引出黑暗。
什么是大数据?《大数据》一书未能给出确切定义。我以为,从本质上讲,大数据首先指的是数据的数量大(VOLUME)。2013年,世界存储的数字化数据将达1.2泽字节。这么大的数据究竟有多大?形象一点说,如果把这些数据印成书,一本挨一本平铺,可覆盖52个美国;若刻成光盘且将之垒成5堆,那么,5根光盘“通天柱”可直达月球。
大数据的第二个特点,是数据的增长速度快(VELOCITY)。德国发明家古登堡1439年发明铅字印刷后,欧洲第一次出现了信息爆炸。美国历史学家伊丽莎白·爱森斯坦研究发现,1453年-1503年的50年间,欧洲约印刷了800万本书,超过了之前欧洲所有手抄书的总和。也就是说,欧洲的信息储量用50年翻了1倍。而现在,美国信息专家马丁·希尔伯特说,数字数据储量每3年就会翻1倍。人类存储信息的速度比世界经济的增长速度快4倍。
当然,大数据还具备如下3个容易理解的特点:种类多(VARIETY)、准确(VERACITY)和价值(VALUE)。
在世界经济苦难挣扎之时,许多聪明的商家把目光瞄上了具备上述“5V”特征的大数据。他们认为,世界储存的数据虽然庞大,但其已被利用的价值只有一小部分。如果转变思维方法,将这些数据重新组合和处理,其潜在价值之大难以估量。
比如说,美国社交网站脸书(FACEBOOK)有10亿用户,网站对这些用户信息进行分析分类后,广告商可根据分析结果精准投放广告。因此,对广告商而言,脸书10亿用户的数据信息值1000亿美元。
另有分析显示,2012年,运用大数据的世界贸易额已达60亿美元。2016年,这个数字预计将达200亿美元。
既然重新处理数据能赚钱,一些具有用户信息优势的公司,如谷歌、微软等,都会尽其所能搜集其需要的信息。这样,至少有两个问题已凸显了出来。一个是如何保护个人隐私问题。奥美公关公司最近公布的一份调查报告显示,75%的人不希望企业存储自己的个人信息,90%的人反对企业收集自己上网浏览网页的记录。另一个是如何防止信息垄断问题。由于谷歌、微软等公司用户数量上的绝对优势,它们占有的用户信息也就占有绝对优势,再加上这些公司还有信息储存、传输和分析技术上的优势,它们也就很容易垄断数据贸易市场。
近年来,欧盟一直在调查微软和谷歌在侵犯个人隐私和信息垄断方面的问题。如果指控被证实,这两家公司将面临重罚。其他国家也应向欧盟学习,提前从速立法,以规范可能日益繁荣的数据贸易。
从经济角度讲,大数据及其产业链到底能带来多大效益,现在还不好估量。但有一点可以肯定,即使大数据可以引领某个行业暂时繁荣,也可以成就许多亿万富翁,但却不能从根本上扭转目前世界经济的颓势。因为,从根儿上讲,大数据充其量是一次如何充分利用现有数据的思维转换,而非彻底改变经济模式的“大思想”。
什么是“大思想”?我以为,凡是构成某一行业从无到有之基础的思想,就是“大思想”。比如说,德国启蒙思想家莱布尼茨曾写过《1与0,一切数字的神奇渊源》一文,从而发明了二进制。没有二进制,很难想象会出现现在的计算机和数字化;没有计算机和数字化,又怎能出现IT行业和大数据呢?
再比如,英国启蒙思想家亚当·斯密1776年发表《国富论》一书。可以说,没有斯密倡导的“看不见的手”,很难想象会有现代自由市场经济;没有自由市场经济,人类的物质生活水平就很难发展到目前的富裕程度。英国史学家巴克勒在《文明史》一书中说:“从人类财富创造的角度看,斯密超过了所有政治家。”
要想医治当前世界经济的病态,大数据之类的思维变换或许在治标上能起一定作用。但要治本,还需催生科技创新的“大思想”。
数据分析咨询请扫描二维码
需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20