摘要:决策树主要用来描述将数据划分为不同组的规则。第一条规则首先将整个数据集划分为不同大小的子集,然后将另外的规则应用在子数据集中,数据集不同相应的规则也不同,这样就形成第二层数据集的划分。一般来说,一个子数据集或者被继续划分或者单独形成一个分组。
1.预测模型案例概述
一家金融服务公司为客户提供房屋净值贷款。该公司在过去已经拓展了数千净值贷款服务。但是,在这些申请贷款的客户中,大约有20%的人拖欠贷款。通过使用地理、人口和金融变量,该公司希望为该项目建立预测模型判断客户是否拖欠贷款。
2.输入数据源
分析数据之后,该公司选择了12个预测变量来建立模型判断贷款申请人是否拖欠。回应变量(目标变量)标识房屋净值贷款申请人是否会拖欠贷款。变量,以及它们的模型角色、度量水平、描述,在下表中已经显示。
SAMPSIO.HMEQ数据集中的变量,SAMPSIO库中的数据集HMEQ包括5960个观测值,用来建立和比较模型。该数据集被划分为训练集、验证集和测试集,从而对数据进行分析。
3.创建处理流程图
添加结点
连接结点
定义输入数据
为了定义输入数据,右键输入数据源结点,选择打开菜单,弹出输入数据对话框。默认情况下,数据选项卡是激活的。
点击select按钮选择数据集,
4.理解原数据样本
所有分析包在分析过程中必须定义如何使用这些变量。为了先对这些变量进行评估,EM采用元数据方式处理。默认方式下,它从原始数据集中随即抽取2000个观测样本,用这些信息给每个变量设置模型角色和度量水平。它也计算一些简单统计信息显示在附加选项卡中。如果需要更多的样本量,点击右下角的Change按钮,设置样本量。
评估这些元数据创建的赋值信息,可以选择变量选项卡查看相关信息。
从图中可以发现,Name列和Type列不可用。这些列表示来自SAS数据集的信息在这个结点中不能修改。名称必须遵循命名规范。类型分为字符型和数值型,它将影响该变量如何使用。EM使用Type的值和元数据样本中级别的数量初始化每个变量的模型角色和度量级别。
5.定义目标变量
在该分析中,BAD是一个响应变量,将BAD变量的模型角色设置为target类型。右键BAD变量的Model Role列,设置模型角色。
6.观察变量分布
我们可以根据元数据样本观察每个变量的分布情况。譬如,查看BAD变量的分布情况,右键BAD变量的Name列查看BAD的分布情况。
7.修改变量信息
为了保证剩下的变量拥有正确的模型角色和度量级别,将DEROG和DELINQ的度量级别设置为有序(Ordinal)。右键DEROG变量的Measurement列,设置为Ordinal。
8.查看描述性统计信息
点击Interval Variables选项卡和class variables选项卡可以查看变量的基本统计信息。
9.观察数据划分结点的默认设置
打开数据划分结点,默认方式下,划分选项卡是被激活的。数据划分方法显示在方法显示面板。
EM对输入数据集进行抽样,将原数据集分成训练、验证和测试数据集。默认情况下,采用简单随机抽样方法。并且,可以选择层次抽样或者自定义抽样方法。另外,还可以为初始随机抽样过程定义随机种子。
在选项卡的右边,可以设置训练、验证和测试数据集的比例,它们之和为100%。
打开树节点,设置决策树模型,在变量选项卡中查看变量的状态、模型角色和度量方式。(如果度量方式不准确,在树节点中是不能修改的。需要在数据源输入节点中进行更正)并且,树节点可以处理缺失值现象。
选择基本选项卡,很多构建决策树的选项在该选项卡设定。划分标准依赖于目标变量的度量方式。对于二值或者名义目标变量,默认的划分标准是重要水平为0.2的卡方检验。另外,也可以选择熵方法或者基尼系数方法作为划分标准。对于顺序目标变量,只有熵和基尼方法可选。对于区间变量,有两种划分标准选择,默认方法和F检验或者方差检验。
在设置树的增长和大小中,默认方式下,只有二值划分是允许的,树的最大深度是6,最小的观测值数量是1。然而,为了划分节点依旧需要设置节点中观测值数量。默认的在训练集中的观测值数量是100。
关闭树节点,运行树节点,查看运行结果。
在查看菜单,点击树状结构,查看决策树型图
在该图中,可以发现6个叶子节点。
除非注明来源,本站文章均为原创或编译,转载请注明出处并保留链接。数据分析网 » SAS-EM 决策树操作案例。
原文链接:http://blog.sina.com.cn/s/blog_61c463090100m1e2.html
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13