京公网安备 11010802034615号
经营许可证编号:京B2-20210330
有时候数字确实需要分享一个美丽的故事分享!
当今社会,数据可视化是至关重要的。没有强大的可视化,几乎不可能在堆积如山的数据中创造或者叙述它的故事。这些故事有助于我们构建策略,并做出明智的商业决策。
R是让数据可视化更加有趣和简单的很好支持。它已经具备了基本的功能,Package提供的外部支持使它成为一个令人开心的工作工具,感谢我们的社区成员。
在所有的包中,ggplot package已经在R中成为了数据可视化的同义词,它可以让你获得更多的控制图,图表和地图,也被称为能创造让人吃惊的图形。我要衷心的感谢Hadley Wickam, 这个成就ggplot2 package的父亲。
在这篇文章中,通过R用户用ggplot package工作中,我已经回答了的一些最常见的问题,所以,下一次当你需要可视化数据的时候,你可以选择下面的任何一个。
注:这篇文章最适合初学者,和中级的具有数据可视化的基本知识的R用户,您可以参考这个完整的数据可视化指南。

现在开始
让我们快速结束可视化热身仪式
数据集:在这篇文章中,我们使用了来自大市场预测的数据集。数据可供下载。

现在我们可以更好的开始了,对变量类进行检查。这将有助于你决定最适合他们制图的类型。
Q1如何创建散点图
使用类型:要看连续变量之间的关系时,使用散点图。

让我们快速了解ggplot的代码的结构:
1、 aes-指美学,它包含用于创建图的变量的名称。
2、 geom_point-ggplot提供了很多可以用来代表数据的geoms。因为,在这里我们用散点图,我们用gem_points.
3、 Scale_x_continuous-x 变量是连续的。这个参数是用来表示在x轴改变的信息。
4、 scale_y_continuous-它在Y轴执行与scale_x_continuous相同的任务。
5、 heme_bw –指设置情节的背景。我使用了网格版本。
我们还可以在当前的情节添加一个分类变量(item_type)。检查数据,以熟悉数据集中的可用数据。

我们甚至可以通过创建单独的item_type让分离散点图更好。

在结尾,你需要”缩放”这个图成为一个清晰的视图。放大的版本看起来像这个样子。在这种情况下,参数facet_wrap搞了鬼。它包括了矩形布局中的面。
Q2:如何创建直方图?
使用类型:当我们要绘制一个连续的变量,我们就使用直方图。

Q3:如何创建一个条形图?
使用类型:当我们要绘制一个分类变量或连续变量和分类变量组合时,就使用条形图。

你可以删除coord_flip()参数得到这个垂直条形图。正如你所看到的,我对这个图形尝试了不同的主题。欢迎你用ggplot package来做实验。

为了达到更好的视觉效果,你可以在末端放大这个图形。在这个图中,我分别在x和y轴使用了分类和连续变量。
Q4:如何创建栈条形图?
什么时候使用:它是一个高级版本的条形图。当我们希望可视化组合分类变量时使用。

Q5:如何创建一个箱线图?
使用类型:箱线图被用来绘制分类和连续变量的组合。此图有助于我们分辨数据分类并检测异常。
黑点是异常值。异常检测与排除是成功的数据挖掘的一个重要步骤。

Q6:如何创建一个区域图?
使用类型:区域图是用来显示一个变量或数据集的连续性。这是非常相似的线形图。它是常用的时间序列图。或者,它是用来绘制连续变量和分析的基本趋势。

Q7:如何创建一个热图?
使用类型:热图是用颜色的强度(密度)来显示两三个或多个变量在一个二维图像中的关系。

为了更好的视觉,你可以最后放大这个图表。黑暗的部分表示项目MRP接近50.较亮的部分表示项目的MRP是接近250。
热图也可以产生于图像识别的视觉效果。这可以通过添加一个参数作为插入来完成。

Q8:如何创建一个相关图?
使用类型: 相关图是用来测试数据集的可用变量间的关联程度。创建一个相关图,我们用corrgram package代替ggplot。我意识到用专业软件包创建相关图比ggplot容易多了。

这也很容易解释。颜色越深,变量间的相关性越高。蓝色表示正相关。红色表示负相关。颜色强度表示相关性的大小。
Q9:如何绘制地理地图?
使用类型:地图常被用来可视化某些影响地理位置的一些因素。在R中绘制很容易。
让我们绘制一个参加2016年的ICC世界杯T20的国家。经过研究,我发现今年有16个国家参加。让我们来看看这些国家在世界地图上的位置。
我们会用ggmaps package一起创建这些地图。


这很容易,是不是?我们还可以美化这个地图。如果你不熟悉世界地图,对你来说就很难找出这些国家的名字。让我们用ggmap package的功能设计这个地图。

这样看起来就更好。ggmap package 是与谷歌地图连接的,因此提取详细的地段直接连接。但是我有一个遗憾。如果你仔细看这幅地图,你会发现这个地图是不完整的。西印度群岛没有在这个地图上显示。我试着从多个源中提取数据,但是并没有成功。如果你们中的任何一个能解决这个谜题,请分享你的解决方案吧。
Q10:如何绘制单个命令中的数据集?
我们每个人都在试图在某个时候做到这一步。我们都在寻找一个命令,使用这个命令让我们可以将所有的变量的数据集一次性画出来。这是你的答案。
你可以使用tabplot package 来完成这个伟业。

结尾注释:
我们终于结束一个丰富多彩的旅程!我希望它能让人们开始几次新的丰富多彩的旅程。你可以已经注意到用ggplot 2会容易很多。大多数的代码是重复的,因此你会很快适应它。当你用geoms制作图表的时候要小心,因为这是最主要的设计元素。当我们开始学习这个包时,我问了在不同的节点的所有问题。因此,一篇关于所有问题的文章出现在我的脑海里。
在这篇文章中,我讨论了9种不同的可以用ggplot package绘制的可视化。这些可视化是否能很好的使用取决于提供给它们的变量类型。因此,如果你想画出来,必须要小心变量的类型。
你觉得这篇文章很有帮助吗?你能否用其他的软件包来制作可视化?快快回复公众号分享你的建议或者意见。
来源 | 36大数据
责任编辑 | 李佳燕
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07