数据中心整合:一个经理的资源清单
近年来,云计算市场得以迅速增长,而各种数据中心服务的新需求也在持续增长。云提供商和数据中心合作伙伴正在日以继夜地工作,使他们的环境尽可能高效。这是为什么?是为了最大限度地提高他们的底线,以保持竞争力。
在目前竞争激烈的数据中心和云计算市场中,市场领军企业在运行最优化和成本效益的同时,还要提供优越的服务。为了实现这一目标,企业还要考虑一些事情。首先,在市场上领先并不总是意味着增加更多的设备。智能数据中心和云服务提供商要学会充分利用自己所拥有的资源。另外,在新的数据中心效率概念中,有人提出一些新的问题:有没有推出一种提高功率密度的新技术?数据中心的投资回报率是否有助于降低长期管理成本?有没有一种新的平台,让企业付出更少,获得更多?
在许多情况下,围绕整合数据中心资源,可以创造出更好的效率和更具竞争力的数据中心。有了这样的想法,管理者应该了解涉及数据中心整合的三个关键领域。它们是硬件、软件和用户。
1、硬件
有这么多的新类型工具,人们可以用它来整合服务资源和物理数据中心设备。其解决方案中,包括先进的软件定义技术,以及有助于创建更灵活的数据中心架构的虚拟化。当涉及到硬件和整合时,人们通常会以下几种选择:
网络,路由器,交换机:这些已经正式虚拟化整个网络层。如果企业选择采用,他们可以在一个完全的商品网络架构上运行,并仍然提供企业级功能。例如,积云网络都有自己的Linux发行版,积云Linux希望在行业标准的网络硬件上运行。基本上,它是一个纯软件的解决方案,提供了一个现代数据中心网络设计和运营的标准的操作系统,这是Linux最大的灵活性。当网络组件工作时,寻找可以整合网络功能的虚拟服务,并减少对设备的更多需求。
存储和数据:就像网络,人们现在可以创建和控制自己存储架构的能力。软件定义存储不仅让虚拟化存储控制器层技术上更进了一步,而且这种逻辑组件允许汇总孤立的存储资源,并通过管理层进行控制。人们再也不用担心丢失的存储资源,因为现在可以通过智能存储管理平台控制所有的数据点。此外,新类型的应用程序级策略让人产最大限度地利用存储资源,如闪存,可以通过单点应用到特定的存储库。
刀片服务器:在实际计算层中,数据中心架构师有相当多的选择。融合使人们能够创建一个强大的环境,将数据中心的几个功能耦合到一个基于节点的架构中。即使传统的机架安装服务器现在有了更好的资源控制机制和提高密度。不过,新型刀片架构的允许直接背板结构整合和更多的吞吐量。此外,硬件政策允许人们动态重新配置资源。这使得新的用户采取同一刀片机箱上全新的硬件策略。创建一个“全天候式”的数据中心模型可以让人们更少地添加设备,同时还支持用户的多样化。
管理机架:制冷,电力,以及气流都是数据中心重要的考虑因素,当人们审视整个数据中心整合的情况时,采用了多大的电力容量?数据中心有哪些热点?服务器运行的效率是多少?是否使用了一些周围的空气流动管理的最新机制?因此,创建一个理想的数据中心和机架架构,可以帮助控制更多的设备,这还有很长的路要走。请记住,功率密度和工作负载性能将直接影响到数据中心的环境变量及其健康状态。
2、软件
数据中心设施的软件部分是至关重要的。在这种情况下,人们谈论其管理和可见性。那么能看到所有的资源吗?在优化工作负载时做什么?因为业务现在直接关系到其能力,软件比以往任何时候都更重要,现代数据中心的硬件和软件层可以提高其可视性。
具有良好的管理控制,跨越虚拟和物理组件可以让人们控制资源,优化整体性能。在使用各种管理工具时,要考虑以下因素:
如何监控从芯片到冷却系统的一切,?
是否可以看到虚拟工作负载以及其如何分布?
如何了解硬件资源的利用率?
如何控制负载均衡动态?
DCIM解决方案如何集成到虚拟系统和云计算?
是否可以主动决定资源的利用率?
另外,还有了解数据中心知识,引导DCIM产品市场,以及帮助选择,部署,以及操作数据中心基础设施管理软件等情况。
3、用户
2007年,苹果公司推出了第一代iPhone,在短短八年间的过程中,人们已经看到了采纳云计算,IT消费化,以及物联网对其产品和技术所带来的巨大变化。数据中心在幕后支持所有这些新的数据和这么多的新用户的应用。这些用户请求的应用程序,服务,以及各种其他的关键功能,使人们能够富有成效地生产和生活。然而,这一切的核心都是数据中心的作用。
数据中心整合绝对不能让用户体验产生负面影响。相反;一个好的整合方案实际上应该提高整体性能以及连接用户。新技术使用户能够动态地控制和负载平衡,用户获取他们的资源和数据。新的广域网控制机制可以允许来自不同点的交付或丰富的资源。对于最终用户来说,整个过程是完全透明的。对于数据中心来说,利用云计算,收敛和其他优化工具,可能让人们有更少的资源需求。
对涉及到用户和业务流程的数据中心运营进行严格控制,这也意味着数据中心管理者必须着眼于新的技术和解决方案,以巩固自己的数据中心,同时还支持下一代数据中心的使用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31