数据中心整合:一个经理的资源清单
近年来,云计算市场得以迅速增长,而各种数据中心服务的新需求也在持续增长。云提供商和数据中心合作伙伴正在日以继夜地工作,使他们的环境尽可能高效。这是为什么?是为了最大限度地提高他们的底线,以保持竞争力。
在目前竞争激烈的数据中心和云计算市场中,市场领军企业在运行最优化和成本效益的同时,还要提供优越的服务。为了实现这一目标,企业还要考虑一些事情。首先,在市场上领先并不总是意味着增加更多的设备。智能数据中心和云服务提供商要学会充分利用自己所拥有的资源。另外,在新的数据中心效率概念中,有人提出一些新的问题:有没有推出一种提高功率密度的新技术?数据中心的投资回报率是否有助于降低长期管理成本?有没有一种新的平台,让企业付出更少,获得更多?
在许多情况下,围绕整合数据中心资源,可以创造出更好的效率和更具竞争力的数据中心。有了这样的想法,管理者应该了解涉及数据中心整合的三个关键领域。它们是硬件、软件和用户。
1、硬件
有这么多的新类型工具,人们可以用它来整合服务资源和物理数据中心设备。其解决方案中,包括先进的软件定义技术,以及有助于创建更灵活的数据中心架构的虚拟化。当涉及到硬件和整合时,人们通常会以下几种选择:
网络,路由器,交换机:这些已经正式虚拟化整个网络层。如果企业选择采用,他们可以在一个完全的商品网络架构上运行,并仍然提供企业级功能。例如,积云网络都有自己的Linux发行版,积云Linux希望在行业标准的网络硬件上运行。基本上,它是一个纯软件的解决方案,提供了一个现代数据中心网络设计和运营的标准的操作系统,这是Linux最大的灵活性。当网络组件工作时,寻找可以整合网络功能的虚拟服务,并减少对设备的更多需求。
存储和数据:就像网络,人们现在可以创建和控制自己存储架构的能力。软件定义存储不仅让虚拟化存储控制器层技术上更进了一步,而且这种逻辑组件允许汇总孤立的存储资源,并通过管理层进行控制。人们再也不用担心丢失的存储资源,因为现在可以通过智能存储管理平台控制所有的数据点。此外,新类型的应用程序级策略让人产最大限度地利用存储资源,如闪存,可以通过单点应用到特定的存储库。
刀片服务器:在实际计算层中,数据中心架构师有相当多的选择。融合使人们能够创建一个强大的环境,将数据中心的几个功能耦合到一个基于节点的架构中。即使传统的机架安装服务器现在有了更好的资源控制机制和提高密度。不过,新型刀片架构的允许直接背板结构整合和更多的吞吐量。此外,硬件政策允许人们动态重新配置资源。这使得新的用户采取同一刀片机箱上全新的硬件策略。创建一个“全天候式”的数据中心模型可以让人们更少地添加设备,同时还支持用户的多样化。
管理机架:制冷,电力,以及气流都是数据中心重要的考虑因素,当人们审视整个数据中心整合的情况时,采用了多大的电力容量?数据中心有哪些热点?服务器运行的效率是多少?是否使用了一些周围的空气流动管理的最新机制?因此,创建一个理想的数据中心和机架架构,可以帮助控制更多的设备,这还有很长的路要走。请记住,功率密度和工作负载性能将直接影响到数据中心的环境变量及其健康状态。
2、软件
数据中心设施的软件部分是至关重要的。在这种情况下,人们谈论其管理和可见性。那么能看到所有的资源吗?在优化工作负载时做什么?因为业务现在直接关系到其能力,软件比以往任何时候都更重要,现代数据中心的硬件和软件层可以提高其可视性。
具有良好的管理控制,跨越虚拟和物理组件可以让人们控制资源,优化整体性能。在使用各种管理工具时,要考虑以下因素:
如何监控从芯片到冷却系统的一切,?
是否可以看到虚拟工作负载以及其如何分布?
如何了解硬件资源的利用率?
如何控制负载均衡动态?
DCIM解决方案如何集成到虚拟系统和云计算?
是否可以主动决定资源的利用率?
另外,还有了解数据中心知识,引导DCIM产品市场,以及帮助选择,部署,以及操作数据中心基础设施管理软件等情况。
3、用户
2007年,苹果公司推出了第一代iPhone,在短短八年间的过程中,人们已经看到了采纳云计算,IT消费化,以及物联网对其产品和技术所带来的巨大变化。数据中心在幕后支持所有这些新的数据和这么多的新用户的应用。这些用户请求的应用程序,服务,以及各种其他的关键功能,使人们能够富有成效地生产和生活。然而,这一切的核心都是数据中心的作用。
数据中心整合绝对不能让用户体验产生负面影响。相反;一个好的整合方案实际上应该提高整体性能以及连接用户。新技术使用户能够动态地控制和负载平衡,用户获取他们的资源和数据。新的广域网控制机制可以允许来自不同点的交付或丰富的资源。对于最终用户来说,整个过程是完全透明的。对于数据中心来说,利用云计算,收敛和其他优化工具,可能让人们有更少的资源需求。
对涉及到用户和业务流程的数据中心运营进行严格控制,这也意味着数据中心管理者必须着眼于新的技术和解决方案,以巩固自己的数据中心,同时还支持下一代数据中心的使用。
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21