使用R语言实现数据分段
今天跟大家讲讲我工作中用到的数据分段,数据分段一般在什么地方会使用到呢?评分。之前写过一篇《实战: RFM》模型使用,那篇文章就详细介绍了CRM(客户关系管理)分析中关于RFM的应用。应用中就提到如何对R(最近一次消费距当前的时间间隔)、F(时间段内的消费频次)和M(时间段内的消费总额)指标进行分段,形成三种得分指标,最后根据得分指标计算出每个用户的总得分,从而可以计算用户的价值高低。
本文与之前提到的文章不同之处在于脚本的更改,使脚本更具灵活性。《实战: RFM模型使用》文中对R、F和M分段使用for循环,而且需要对每一个指标做循环,如果某个数据框的字段非常多,这样用for循环就显得非常麻烦。所以就有必要写一段更灵活的连续变量分段操作的R脚本。这里用案例说明一下数据分段操作:
#随机参数一列会员的消费总额
set.seed(1234)
Money <- c(round(runif(n = 5000, min = 56, max = 9143)), round(rnorm(n = 5000, mean = 892, sd = 23)))
#使用《实战: RFM模型使用》的分段方法,这里分成10段,尽量保证每段中的数据量大致相当
library(Hmisc)
#使用cut2()函数对数据进行分段
M_X <- cut2(x = Money, g = 10, onlycuts = TRUE)
#使用for循环将每一段范围值设定一个评分,即1:10分
M_score <- 0
for(i in 1:10) {
M_score[Money >= M_X[i] & Money < M_X[i+1]] = i
#由于范围Money < M_X[i+1]不包含最后一个值,故另外计算
M_score[Money == M_X[11]] = 10
}
table(M_score)
通过上面的方法,可以将连续型数据分成n段,从案例返回的结果可知,10段中的样本量基本相当,可以视作分段成功。下面再看看自定义函数实现的分段:
#自定义得分函数,x为目标向量,g为所需分段数量
Score_function <- function(x,g = 10){
require(Hmisc)
#计算分段的切割点
cuts <- cut2(x,g = g, onlycuts = TRUE)
#将所需结果存放在res数据框中
res <- data.frame(x=x, cut = cut2(x, cuts = cuts),score = as.numeric(cut2(x, cuts = cuts)))
#这里返回res数据框中的评分字段
return(res[,'score'])
}
M_score2 <- Score_function(x = Money, g = 10)
table(M_score2)
同样,分段的结果与《实战: RFM模型使用》脚本的结果一致,这里说一下自定义函数的优势:
1)可以灵活的更改分组数量,即g参数
2)不需要循环,速度得到提升
3)可以结合sapply()函数,应用于大型数据框(高维数据),从而避免对每个字段都计算一次for循环
下面创建一个数据框,来验收一下自定义函数的效果:
set.seed(1234)
x1 <- round(rnorm(n = 5000, mean = 125, sd = 30))
x2 <- round(runif(n = 5000, min = 10, max = 100))
x3 <- round(runif(n = 5000, min = 100, max = 1000))
x4 <- round(rnorm(n = 5000, mean = 100, sd = 10))
df <- data.frame(x1 = x1, x2 = x2, x3 = x3, x4 = x4)
#结合sapply()函数
df2 <- sapply(df, Score_function)
head(df2)
df2 <- as.data.frame(df2)
table(df2$x1);table(df2$x2);table(df2$x3);table(df2$x4)
如果使用《实战: RFM模型使用》的方法,4个变量需要单独拿出来做4次for循环。如果你觉得还可以再套一个循环,这样就可以不用单独4次for循环了,问题是这样做会大大降低计算效率,影响速度。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13