京公网安备 11010802034615号
经营许可证编号:京B2-20210330
使用R语言实现数据分段
今天跟大家讲讲我工作中用到的数据分段,数据分段一般在什么地方会使用到呢?评分。之前写过一篇《实战: RFM》模型使用,那篇文章就详细介绍了CRM(客户关系管理)分析中关于RFM的应用。应用中就提到如何对R(最近一次消费距当前的时间间隔)、F(时间段内的消费频次)和M(时间段内的消费总额)指标进行分段,形成三种得分指标,最后根据得分指标计算出每个用户的总得分,从而可以计算用户的价值高低。
本文与之前提到的文章不同之处在于脚本的更改,使脚本更具灵活性。《实战: RFM模型使用》文中对R、F和M分段使用for循环,而且需要对每一个指标做循环,如果某个数据框的字段非常多,这样用for循环就显得非常麻烦。所以就有必要写一段更灵活的连续变量分段操作的R脚本。这里用案例说明一下数据分段操作:
#随机参数一列会员的消费总额
set.seed(1234)
Money <- c(round(runif(n = 5000, min = 56, max = 9143)), round(rnorm(n = 5000, mean = 892, sd = 23)))
#使用《实战: RFM模型使用》的分段方法,这里分成10段,尽量保证每段中的数据量大致相当
library(Hmisc)
#使用cut2()函数对数据进行分段
M_X <- cut2(x = Money, g = 10, onlycuts = TRUE)
#使用for循环将每一段范围值设定一个评分,即1:10分
M_score <- 0
for(i in 1:10) {
M_score[Money >= M_X[i] & Money < M_X[i+1]] = i
#由于范围Money < M_X[i+1]不包含最后一个值,故另外计算
M_score[Money == M_X[11]] = 10
}
table(M_score)
通过上面的方法,可以将连续型数据分成n段,从案例返回的结果可知,10段中的样本量基本相当,可以视作分段成功。下面再看看自定义函数实现的分段:
#自定义得分函数,x为目标向量,g为所需分段数量
Score_function <- function(x,g = 10){
require(Hmisc)
#计算分段的切割点
cuts <- cut2(x,g = g, onlycuts = TRUE)
#将所需结果存放在res数据框中
res <- data.frame(x=x, cut = cut2(x, cuts = cuts),score = as.numeric(cut2(x, cuts = cuts)))
#这里返回res数据框中的评分字段
return(res[,'score'])
}
M_score2 <- Score_function(x = Money, g = 10)
table(M_score2)
同样,分段的结果与《实战: RFM模型使用》脚本的结果一致,这里说一下自定义函数的优势:
1)可以灵活的更改分组数量,即g参数
2)不需要循环,速度得到提升
3)可以结合sapply()函数,应用于大型数据框(高维数据),从而避免对每个字段都计算一次for循环
下面创建一个数据框,来验收一下自定义函数的效果:
set.seed(1234)
x1 <- round(rnorm(n = 5000, mean = 125, sd = 30))
x2 <- round(runif(n = 5000, min = 10, max = 100))
x3 <- round(runif(n = 5000, min = 100, max = 1000))
x4 <- round(rnorm(n = 5000, mean = 100, sd = 10))
df <- data.frame(x1 = x1, x2 = x2, x3 = x3, x4 = x4)
#结合sapply()函数
df2 <- sapply(df, Score_function)
head(df2)
df2 <- as.data.frame(df2)
table(df2$x1);table(df2$x2);table(df2$x3);table(df2$x4)
如果使用《实战: RFM模型使用》的方法,4个变量需要单独拿出来做4次for循环。如果你觉得还可以再套一个循环,这样就可以不用单独4次for循环了,问题是这样做会大大降低计算效率,影响速度。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23