大数据关联营销
大数据营销,无疑是当前商业领域最热门的话题之一。 然而,大数据分析的基础是什么?当然是数据。随之而来的问题是:数据从哪里来?营销者自然而然会想到IT企业。诚然,进入Web2.0时代,网络就不仅仅是企业的舞台,每个人都可以通过一根网线在网络上留下自己的痕迹。因此,互联网企业拥有海量的数据,拥有大数据分析的天然基础。此外,使用芯片的各类设备制造企业也有大数据,它们通过植入机器中的小小芯片,记录用户的各种操作行为,为用户行为分析积累了大量的数据。以及大型连锁超市、金融服务中心等,它们掌握了具体的消费信息,同样积累了大量的数据。所以,在各类介绍大数据营销的书籍中,其援引的案例大多出于以上行业。那么,是不是这些行业之外的企业就与大数据营销隔绝开了呢?
社会化媒体数据
企业积累的数据通常可以分为以下几个类型:一是网络数据,通过互联网加载代码记录用户的浏览及点击行为,也就是海量的网络浏览点击痕迹数据;二是通过芯片记录的产品使用痕迹数据;三是消费行为痕迹数据,涉及少数几个特定的行业,并且其数据跨越了多类产品、多个行业,比如超市的每笔消费数据、淘宝的店主销售信息等。这三类数据主要集中于互联网行业、设备制造行业和零售行业。
此外,这三类数据的特点是“人们在无意识下自然产生的”,因为它难以与消费、使用的“人”建立联系而显得“生硬、不够鲜活”。因此,对这些海量数据进行分析,可以发现信息之间的关联,却难以解释为什么会形成这样的关联;可以发现消费特点,却难以在精准营销的执行层面进行转化,因为无法确切知道产生这些行为的是什么样的人。当然,还有一类数据可以在一定程度上弥补这样的缺陷,比如企业内部的销售、客服部门往往记录了更多的信息,对“人”进行补充描摹,但是这一类数据时效性比较弱,如果不对数据库及时更新致使信息错误率较高。
然而,社会化媒体时代出现了第五类数据,这就是自媒体爆发带来的海量数据。由于粉丝的出现,让企业得以区分社会化媒体中个人与企业的远近关系。粉丝的“自发”特性保证了信息的准确性,而“自媒体”的特性则为企业了解目标群体提供了一个近乎免费的通道,且不受特定的行业限制,这就为不同行业的企业进行大数据营销提供了数据基础。
数据彼此之间的关联
然而,当企业想要挖掘数据的商业价值时,面对庞杂的数据,企业却无从下手:数据量大,杂乱,不规则,一些数据缺失,一些数据模糊。比如,有的企业内部各个部门积累了几万条、十几万条甚至数百万条销售数据和客户信息,然而这些销售数据只涉及产品的销售时间、价格、销售店面信息,或者只是简单记录客户的姓名、性别、年龄、联系方式等,而客户购买产品方面的记录很少。换而言之,企业掌握的是一些彼此割裂的数据。由于中国大多数企业内部各自为战,不同的部门没有建立数据共享的通道,各个渠道的数据彼此之间难以关联。
《大数据时代》一书的作者维克托指出,大数据时代要放弃对因果关系的渴求,转而关注相关关系。美国沃尔玛将尿布与啤酒摆在一起,使尿布和啤酒的销量大幅增加。美国妇女通常在家照顾孩子,她们经常嘱咐丈夫下班回家时为孩子买尿布,而丈夫则顺手购买了啤酒。于是,尿片与啤酒形成了关联。因此,大数据挖掘的基础是数据之间的关联,单独的、片段化的数据再多,在大数据环境中也无法实现其价值。所以,中国企业要对原有的数据进行深度分析,首先要建立数据之间的联系,或以“人”的信息(姓名、手机号、身份证号、住址),或以产品信息(如产品的唯一编码),把各个渠道的数据打通,找到“数据的相关关系”。
数据关联可以是虚拟的
但由此带来一个技术性的问题,因为不是所有的数据都能建立真实的对应联系。某些行业,比如运动服饰,其消费是大众化的,企业没有建立完备的用户信息数据库。那么,在这种情况下,企业如何利用大数据获取增值信息呢?
事实上,企业可以利用社会化媒体进行模糊匹配的方式,更好地理解目标群体——即便现有的数据不能全面反映人群的特质,但可以通过社会化媒体实现“信息转化”,在社会化媒体中找到具有类似特质的“网络虚拟人”,并通过这一特质人群在各类社交媒体的全面信息,从而间接“实现”对目标人群的全面描摹。
事实上,社会化媒体为众多没有“先天数据条件”的企业提供了大数据营销的机会,大数据将跳出“痕迹数据关联分析”的处理模式,从“行为”的相关与预测发展到在Web3.0的360度分析与定位。而基于社会化媒体海量数据的“虚拟关联”模式,则为更多的数据关联提供了可能。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13