为你还原一个纯粹地道的数据分析岗
在未来,数据分析团队所发挥的作用将会更大,如果你能够在公司内部打造出一支多元化的团队来的话。所谓多元化,是队伍的技能组合、世界观、从业背景完全不同。
数据分析行业现在大热,只要是在科技创新领域的公司,纷纷都挂出来了急招“数据分析师”的牌子。但是很多人对它的概念并不了解,还有更多的创业者更是不知道是否应该去组建一支数据分析团队,在什么时机组建?又以何种方式组建?本文为你一一道来。
在 2008 年,很难想象还会有「数据分析师」这个职业。来自 Facebook 的 Jeff Hammerbacher 以及 LinkedIn 的 DJ Patil 发明了这个词,以应对横跨分析学、软件工程以及产品开发三个维度的综合性需求。如今,「数据分析师」这个行业越来越火了,似乎跟科技有关的各个行业都在找这方面的人才,寻找对数据分析有着清楚见解的专业人士。
我们两个人作为行业内人士,身处不同的科技行业,在若干个不同的公司,于若干的不同的发展阶段,见证了数据分析团队中的长处,短板,还有当下行业内各顶尖数据分析团队的做法。我们同时还亲身体会到了公司招聘一个顶尖的数据分析师有多难,而且在这个充满高度竞争的市场中真切地感受到,充分利用他们,留住他们又是多么困难的一件事。
在这篇文章中,我们给出了自己的一些想法与总结。对于那些致力于想打造一支数据分析团队的创始人来说应该有一点用处。我们解释了为什么现在对于很多初创公司来说数据分析是一件重要的事,什么时候公司应该开始做这件事,应该在公司的哪个部门应用数据分析,以及如何能够在公司内部构建一种让数据分析蓬勃发展的公司文化。
首先第一件事,你想要达到什么目的。
总的来说,数据分析指向两个同等重要,但截然不同的目标:改进客户目前所使用的产品,优化公司所作出的每一个商业决策。
指向产品的数据分析:使用「数据学」以及「工程学」来提升产品的性能,尤其在「获取到更优质的搜索结果」、「推送更理想的推荐以及自动化决策」上面。
指向决策的数据分析:利用数据来分析商业指标,比如增长型、使用度、盈利驱动点、用户反馈,借此来找出当下最优的商业决策。
这两者的区别通过定义就能一目了然,但是每个人都不能掉以轻心,在你创办了公司,并且逐步壮大数据分析团队的时候,一定要将这两者的区别牢牢记在心上,且不可混为一谈,迷失方向。现在,让我们仔细观察这两个不同的领域。
利用数据分析来打造更优秀的产品
指向产品的数据分析,其目的就是为了提升产品性能。他们往往依托于一种良性循环,开发人员可以通过收集产品的使用情况方面的数据,最终通过一系列的算法,让用户获得更理想的体验。
在你收集到数据之前需要做什么?你第一版的产品估计会存在「冷启动问题」(数据分析领域的专有名词)。它必须开启一个达到了某个标准之上的使用体验,借此能够开启关于数据收集及分析上的良性循环。这取决于产品经理和工程师是否应用了更好的开发思路。
就比如说,当一个 Instacart 的用户访问了网站,应用会把「最近购买过的商品」放置到「再买一次」的下面。这个功能能够取悦用户,但是它很难让数据分析介入进来,又或者换句话说「产出足够多的数据」。数据分析什么时候起作用?就比如说我们要给用户一些推荐,推荐的商品是这些用户之前从来没有买过的。要达到这个目的,就必须分析所有用户的购买习惯,评估哪些用户跟哪些用户是类似的,最终将用户分组,然后按照他们购买过的产品,向他们推荐更适合他们心意,却从来没有买过的商品。这是数据分析学利用数据来产出价值的地方,让客户能够很方便地在线上商城不断地探索新的领域,这些都是他们自己浏览完全无法碰见的商品。
为了改善产品,数据分析师必须跟工程师紧密地团结在一起,持续不断地进行协作。作为创始人,你还必须要做一个决策:是数据分析师自己来提升产品性能呢?又或者是跟工程师联手合作?不管是哪一种方式,它们其实都能起到作用,最关键的是要将这个流程制度化,并把发现结果及时地分享给公司全体成员。如果你这一点做得不够好,你很难在产品提升上有什么起色,而且很多数据分析会因为在你的公司工作却看不到自己的价值,不受重视而灰心丧气地离开。
利用数据分析来做更优质的决策
指向决策的数据分析是利用「数据分析」和「数据视觉化」这两个方面,将最优的商业决策和产品决策展现出来。决策者可以是公司里面的任何一个岗位,他有可能是产品经理,用以决定现在产品路线图上工作任务的优先次序,也可以是高管团队,对目前公司的战略方向做出更清晰合理的规划。
指向决策的数据分析涉及好几个领域,它们都有几个共同的特点。它们都面临的是比较前沿的问题,公司在此前从来没有遭遇过,也没有想着去加以解决的。它们往往比较主观,需要数据分析师来处理一些未知的变数和一切缺失掉的客观条件。它们很复杂,里面的一些关键因素之间缺乏明显的关联关系。同时,指向决策的数据分析也是可以通过评测的方式来解决问题的。决策带来的正面结果是实实在在的,每个人都能看得见,且对公司的发展意义重大。
上面的这一番说法不禁让人起了疑惑,你说不就是「数据分析工具」嘛。确实,关于「分析」和「决策」,这两者的区别并不是很明显关于决策的分析学不仅仅是面向「报告」和「表盘」。而那些利用市面上现成的「商业智能工具」就能完成的工作,也不属于数据分析师的工作范畴当中。
在 LinkedIn,高管团队使用「决策上的数据分析」来做很多关键的商业决策判断,比如处理在搜索结果中的成员档案可视化问题。在过去,只有付费用户才能在拓展人际网络(三度人际网络)上看到每一个人的完整档案。这种可视化的规则在过去非常复杂,而 LinkedIn 想要简化它,但同时还要不能让它影响收入。这其中的利害权衡就显得非常关键。
他们计划让用户档案的可视化这样子处理,在未付费用户那里,一个月查看用户完整档案是有一定的上限次数的,而且基于每个免费用户的使用情况分配不同的上限次数。LinkedIn 的数据分析师模拟了这样的变动会带来的影响,利用用户过去的历史行为数据来预测收入上的变动,以及产品使用度上的变化。分析师必须在过去的固有模式上将用户的行为「抽离」出来,然后再把这些行为「安放」到新的模式下看它们会发生怎样的变化。结果证明这样做非常有助于公司的发展。
最后的结果正如模拟结果一样,不仅仅为公司带来业绩上的提升,而且还愉悦了数百万用户,在产品研发上面理清了方向。一些人曾经抱怨查看次数上面的限制,但是恰恰就是这群人,在 LinkedIn 的眼中是应该转化成为付费用户的一批人。这个项目非常成功,其中的关键得益于数据分析师所带来的「未卜先知」的神奇能力。
也不是说所有的决策都需要这么大动干戈地使用数据分析。一些决策其实很小,杀鸡焉用牛刀。另外一些决策很重要,但是恰恰公司在这个时候并具备充分的数据来分析它们。在这些情况下,公司必须依赖于某种商业上的直觉,以及后续展开的一些测试。优秀的决策型数据分析师知道自己的极限在哪里,当意识到他们的努力换不来相应的结果,甚至会带来副作用的时候他们会立刻中止掉工作。
尽管决策型分析又或者是产品型,它们都需要一些相同的技能。但是数据分析师不可能在这两个方向上都精通。决策型分析取决于产品和商业模式,系统性思考,还需要具备强有力的沟通技能;产品型分析要求具备机器学习的知识,产品层面的工程技术。如果你有一支数据分析团队,你也许需要找出那凤毛麟角地两方面都擅长的人才,但是这种情况不多件,更现实的考虑是,当你的团队不断壮大,各在一个方向找出一个专精于此道的数据分析人才。
你是否应该投资于数据分析?
数据分析并不是每一个人都适合,只有在它对你的成功起到决定性作用的前提下,你才想要去投资它。否则,它就会成为一个代价高昂,分人心神的邪路。
为了能够更好的确认你是否应该投资建设一支数据分析团队,你应该问自己下面的四个问题:
1. 你是否真的要专注于数据分析这个行当,要么打造更优秀的产品?要么凭此来做出一个又一个更加优化的决策?
如果你没有下决心来凭借数据分析达到上面两个目标中的任意一个,那么最好数据分析这个行业你还是不要涉足的好。
它是可以帮你做出战略性的决策规划,但是只有在你想要在全公司范围内打造一种以数据作为驱动的公司文化的前提下,一切才能成真。公司文化这件事并不一定从第一天开始做,但是你需要招聘正确的员工,并且花时间让他们知道数据的价值,你的公司的产品重心是什么。而让数据分析结果转化成为优质据测之前,你一定要完成上面的这些工作。
指向产品的数据分析学可以通过持续不断的优化,创造产品新的价值,并让用户得到越来越多的满足。数据分析师应该可以在产品设计、数据收集、系统底层架构等方面做出关键决策,从而给客户带来一款梦幻般的产品。
2. 你在未来是否有能力收集一切你需要的数据,并且将此作为行动的准绳?
一个身为创始人的软件工程师可以利一些在产品和设计上的创新思路,打造一款「最小可行化产品」的。而数据分析师手中的工具就是数据,这个数据有两个特点:首先它必须是可以收集评测的;其次它必须是不断规模化增长的。「推荐系统」就是要求你的产品能够追踪用户的消费行为,对商业决策的优化依靠的是在关键行为和产出上给予一些更加合理的指导。
但是收集到数据并不是全部内容,只有把行动建立在数据的基础上,数据分析学才真正有了意义。
数据应该指导产品变动,提升公司的关键性能指标。(KPI)
在这个过程中,全公司上下的人都需要不断确认每一款产品所需要收集的数据都是什么,并且在收集和维护这些数据的同时,建立起一个更加牢靠的底层架构和流程。为了实现理想中的结果,数据分析师、工程师、产品经理三方应该联手写作,并且转化成实实在在的执行力。
同样,以数据作为基础的决策也需要公司自上而下的动员。从 CEO 一直到公司基层部门,公司应该一切以数据说话,而不是谁拿的薪水高就听谁的话。
3. 你是否在数据中来获取到足够多的信号?借此获得深刻的洞见?
很多人把大数据等同于数据分析,但是数据的规模并不意味着一切。数据分析是要将有价值的信号/迹象从「数据的噪音」中抽离出来的过程。而有价值的信号/迹象不仅仅依靠的是数据的规模,更重要的是「信噪比」。
举个例子,一款广告产品也许从也许能从几十亿次广告投放中获取信息,但是真正有价值的,承载「信号」的数据出现在为数不多的例子当中,在这些情况下,用户必须要跟广告进行互动才可以。因此,大规模的数据产出的是少量的信号。所以,除非你的数据量中存在着很多有价值的信号,否则数据分析面对再大规模的数据量也无能为力。
4. 你是否需要让数据分析成为自己的核心竞争力?又或者你可以将数据分析这项工作外包出去?
打造一支数据分析团队是困难的,成本也是很高的。如果你能通过「外包」的形式绕过这个问题的话,那自然最好不过。其中的一个选择就是认真地使用顾问。更好的做法是,利用现成的解决方案,比如利用 API 来消化数据,建立模型,将行动自动化,并且在关键指标的评测上给予报告。这些也许不是满足你需求的最完美的解决方案,但是它确实能起到加速你公司发展的效果,让你的核心团队将精力放在能够产出更大价值的领域上。
什么时候你需要将数据分析作为公司的核心竞争力?如果数据分析解决的问题对于你的公司来说具有决定生死输赢的作用,那么你就不能再把它外包出去了。另外,市面上存在的数据分析解决方案往往都比较教条僵化,如果你的公司正在尝试一种创新的方法,比如收集一种全新的数据,又或者以别人想象不到的角度来应用这些数据,那么市面上的这些解决方案的灵活度不够,有可能不太适合你的需求。
你什么时候应该开始涉足数据分析?
数据分析要求你从「数据」迈向「分析」,绝大多数的公司一开始并没有多少数据在手里。
谨慎考虑招聘一位数据分析的带头人,又或者是打造一支这样的团队,除非你现在手中有活儿给他们。同时,你要从一开始就收集关键数据,这样在必要的时候,数据分析团队是有分析的基础的。
如果你现在手中还没有数据,那么就应该想想你现在需要收集怎样的数据?什么时候去收集它们?并且将这个工作指派到一个人身上。这个人并不一定非得是数据分析师,但他最好得懂不同数据组合应有的价值,并且在你数据投资的策略上对一些比较棘手的问题做出决策。如果你已经知道你即将要花很多钱和时间在数据获取上,那么也许是时候拨出一点点的预算来,找到你的第一位数据分析师。
有可能出现这样一种情况:你的公司现在正全力以赴地打造数据产品,你现在立刻就需要数据,但是更可能你的最小可行化产品(MVP)将不是数据驱动的。在一开始,最小可行化产品往往凭借的是一种直觉,然后去验证市场是否认可这种直觉?在这种情况下,过早地投资于数据获取和数据分析上面将让你花掉过多的,不必要的时间和金钱,这些资源本应该放在「尽快让你的最小可行化产品上市」这项工作上。
一旦你有了数据(或者很快就要有数据)给数据分析师利用,那么你应该快速地着手准备打造一支数据分析师团队了。
将一种以数据为中心的公司文化建立起来,这项工作的启动应该越早越好。
商业决策,无论是用户获取还是产品发布,都应该建立在数据的基础上,而不是某些人的主观臆断。将数据作为价值的核心所在,让公司全员都能够培养起来这样一种思维习惯,视数据为最高级别的资产,越早做这样一件事,体现出来的价值也就越大。
数据分析咨询请扫描二维码
数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21