SAS系统被誉为国际上的标准软件系统,本文将详细介绍如何在SAS/EM模块中进行关联规则数据挖掘,使用的软件版本是SAS 9.1.3下的Enterprise Miner 4.3:
从SAS顶端的【解决方案(S)】菜单下调出企业数据挖掘(也可以通过在命令行输入miner):
SAS/EM的初始界面如下:
接下来,将数据挖掘外接程序示例数据集中的Associate表导入SAS逻辑库。先将xlsx文件另存为xls文件,再双击SAS资源管理器中的逻辑库,从【文件(F)】菜单下调出【导入数据】对话框:
点击【Next >】,选择xls文件及相应的工作表:
点击【Next >】,选择相应的SAS逻辑库并命名:
点击【Finish】,完成数据导入操作。回到SAS/EM界面,双击Untitled节点并重命名为Analysis。
鼠标左键按住上方工具栏中的【Input Data Source】节点 不放,拖入右边的空白区域之后再放开鼠标,此时SAS/EM界面如下:
双击刚刚拖入的【Input Data Source】节点,选择前面导入的数据集Sasuser.Associate:
切换到【Variables】选项卡,在【Model Role】列【CATEGORY】行处点击右键,选择【Set Model Role】菜单:
分别将【CATEGORY】行设置为target,其他两行设置为rejected:
关闭对话框,询问是否保存变化时,点击【是(Y)】。若关闭SAS后重新打开EM项目时弹出Diagram被锁,则删除emproj文件夹中后缀是.lck的文件即可继续编辑。
鼠标左键按住上方工具栏中的【Association】节点 不放,拖入右边的空白区域之后再放开鼠标。将鼠标移向旁边的【SASUSER.ASSOCIATE】节点周围,当变成十字型时,鼠标左键按住不放,拖向【Association】节点,此时SAS/EM界面如下:
双击右边的【Association】节点 图标,切换到【General】选项卡的界面如下:
默认的分析模式是【By Context】,它根据输入数据源的结点信息选择合适的分析方法。如果输入数据集包括一个id变量和target变量,该结点自动执行关联分析。下面的选项是设置关联最小支持度、项集最大数目和规则最小置信度。
关闭【Association】对话框,右键【Association】节点图标,在弹出的下拉选项中选择【Run】,得到运行结果如下:
此时在【Rules】选项卡上右键单击,会弹出查看图形菜单:
选择【图形(G)】之后,将窗口拉伸到合适的宽度,有些图例需要拉到更宽才会显示出来,结果界面如下:
前面结果表中的19条关联规则都体现在这张图里面,此图的信息量比较大。我们以右下方的圆圈为例来解读它的含义:从纵横坐标轴来看,此圆圈对应表中的第11条关联规则,即{Road Bikes ==> Jerseys};从圆圈标示对应的图例来看,它表示置信度(Confidence)在20.24%到24.13%区间内,从表中可以看出实际值为20.26%;从圆圈的颜色对应的图例来看,它表示支持度(Support)在3.12%到3.78%区间内,从表中可以看出实际值为3.68%;圆圈的大小表示提升度(Lift)的大小,从表中可以看出实际值为1.34。
上面提到的置信度(Confidence)、支持度(Support)、提升度(Lift)是关联发现的三个重要评价指标,它们都是怎么计算出来的呢?我们还是以前面提到的第11条关联规则{Road Bikes ==> Jerseys}为例进行说明:
先简单统计一下数据源中相关数据,总共13050个订单,其中有购买Road Bikes订单的2369个,有购买Jerseys的订单1978个,同时购买了Road Bikes和Jerseys的订单480个,计算以下几个概率:
P(Road Bikes) = 2369/13050 = 18.15%
P(Jerseys) = 1978/13050 = 15.16%
P(Road Bikes & Jerseys) = 480/13050 = 3.68%
置信度Confidence(Road Bikes ==> Jerseys)表示在客户购买Road Bikes的条件下,同时又购买Jerseys的概率,即P(Jerseys|Road Bikes) = P(Road Bikes & Jerseys)/P(Road Bikes) = 3.68%/18.15% = 20.26%。置信度越高,说明相关联的商品被交叉销售的机会越大。
支持度Support(Road Bikes ==> Jerseys)表示客户同时购买过Road Bikes和Jerseys的概率,即P(Road Bikes & Jerseys) = 3.68%。支持度越高,说明相关联的商品被同时购买的越频繁。
提升度Lift(Road Bikes ==> Jerseys)表示使用关联规则可以提升的倍数,是置信度与期望置信度的比值,公式为Confidence(Road Bikes ==> Jerseys)/P(Jerseys) = 20.26%/15.16% = 1.34。
在进行关联规则的数据挖掘中,通过指定这三个标准的最小值,三个标准的值都大于临界值的关联规则就被列出。而且以上这三个标准缺一不可,孤立地使用这三个标准中的任意一个,都可能导致错误结果。
当某种常见现象出现在关联规则右边时,高置信度也会产生误导。比如以下几条规则的置信度都比较高,但几乎是没有作用的规则:“买方便面则买牛奶”、“买牙刷则买牛奶”、“喜欢野外休闲则会买牛奶”等等。这一类规则的置信度和支持度都会比较高,因为很少有人会不买牛奶。但这一类规则没有任何作用。
在关联规则结果界面是查看表的情况下,还可以在查看菜单下选择【生成表子集(S)...】,通过设定筛选出想要的关联规则出来,例如下图是在【Confidence】选项卡中设定最小置信度为26:
点击【Process】后,结果将筛选出8条关联规则。
在置信度(Confidence)、支持度(Support)、提升度(Lift)这三个重要评价指标之中,提升度是最有可能单独使用而不致产生误导的标准,因为它可以测量关联规则增进预测右边现象的能力。但如果该规则的支持度很低,该规则也可能造成误导。
除了以上三个对关联规则的数量标准外,一条关联规则真正可取,还需要具备以下两个条件:一是该规则必须是人们常识之外、意料之外的关联,二是该规则必须具有潜在的作用,而目前任何技术与算法都无法判断哪些知识属于常识,也无法判断哪些属于可能具有潜在作用的规则,因此关联规则的挖掘离不开人的作用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel是数据分析的重要工具,强大的内置功能使其成为许多分析师的首选。在日常工作中,启用Excel的数据分析工具库能够显著提升数 ...
2024-12-23在当今信息爆炸的时代,数据分析师如同一位现代社会的侦探,肩负着从海量数据中提炼出有价值信息的重任。在这个过程中,掌握一系 ...
2024-12-23在现代的职场中,制作吸引人的PPT已经成为展示信息的重要手段,而其中数据对比的有效呈现尤为关键。为了让数据在幻灯片上不仅准 ...
2024-12-23在信息泛滥的现代社会,数据分析师已成为企业决策过程中不可或缺的角色。他们的任务是从海量数据中提取有价值的洞察,帮助组织制 ...
2024-12-23在数据驱动时代,数据分析已成为各行各业的必需技能。无论是提升个人能力还是推动职业发展,选择一条适合自己的学习路线至关重要 ...
2024-12-23在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17