大数据的五大进化趋势
仅仅数年时间,大数据就从大型互联网公司高管嘴里的专业术语,演变成了决定我们未来数字生活方式的重大技术命题。无论是消费者,传统企业还是互联网创业公司,对大数据趋势的洞察和把握都是改变命运的重要思考。为了方便大家理解大数据将如何改变我们生产和消费数据的方式,GigaOM作者Derrick Harris在下面罗列了大数据的五大发展趋势,也欢迎读者留言评论,说出你们眼中的大数据趋势。
一、数据科学的普及化
在数据科学领域,最重大的变化来自数据科学家人才库的壮大。新的在线教育平台(如Coursera和Udacity)向学生传授各种数据科学知识,从基础统计到自然语言处理和机器学习。此外,Oxdata这样的产品还致力于让R这样的经典统计分析工具更加易用和强大。而Quid则让机器学习和人工智能与优美的用户界面无缝结合。Kaggle这样的平台则为预测型分析提供了一个众包解决方案。
一个总的趋势是,最终任何一个有点想象力的,懂点基本的计算机科学知识,但是商业嗅觉敏锐的人将能够更好地利用他们手头的数据。大数据分析将不再高高在上,Datahero、INnfogram和Statwing这样的公司都在试图让门外汉也能从事数据分析,给出漂亮的数据分析结果。
二、Hadoop的MapReduce时代终结
Hadoop作为单一的MapReduce运行平台的日子已经一去不复返了。进化开始于Apache hadoop的2.0版本,新增的YARN功能让Hadoop支持新的处理框架,例如Cloudera的商业发行版目前包括一个SQL查询引擎,以及一些围绕mapReduce的互动分析方法。要想让数据分析师访问Hadoop数据,Hadoop还必须支持更多的功能。
用Platfora进行基于Hadoop的BI分析
总之,MapReduce对于Hadoop来说越来越不重要了。Hadoop社区目前最关心的事情是如何让Hadoop平台的分布处理支持实时分析,更好的服务于下一代数据分析应用(例如商业智能的实时互动分析)。如果Hadoop在这方面进展缓慢,将很快被Storm和Druid这样的技术取而代之。
基于Hadoop分布式文件系统HDFS之上的HBase NoSQL数据库就是一个很好的例子,证明摆脱MapReduce的框架制约后,Hadoop还有很大的价值拓展潜力。目前Facebook和eBay等互联网公司已经开始使用HBase来跑交易应用,而Drawn to Scale和Splice Machine等创业公司则使用HBase作为交易SQL数据库的基础。而一些新的产品或项目,如Graph database Giraph使用HDFS文件系统是因为其可扩展性、相对成熟,而且有一个不断成长的生态环境。
更多人使用大数据应用
大数据的价值在于应用和普及,而不仅仅是数据科学家手里的高深工具。未来越来越多的人都都将能够使用大数据应用,例如开发者。创业公司Continuuity、Infochimps甚至Precog(大数据BI引擎)都在开发面向开发者的大数据工具,使开发者能更容易地将应用与大数据后端对接,这方面的工作大大简化,有时候开发者只需要在程序中植入一个脚本或者一段代码。
大数据应用普及的另外一个趋势是产品化,针对特定应用场景开发出开箱即用的大数据产品,例如分析用户行为、网络安全、人工智能、客户服务等的大数据应用。最早采用大数据技术的公司如Google、Facebook等需要自行开发相关大数据应用,但是对于更多的企业来说,现成的产品才是引爆大数据商业价值的关键。其实今天很多移动或互联网应用中都已经有了大数据的影子,从用户购买决策到好友匹配等。
机器学习无处不在
过去几年,机器学习(Machine Learning)逐渐流行开来,容易让人误以为机器学习并不难。机器学习的流行原因很简单,在一个消费者(以及广告主)需要更多个性化,而计算机系统正被四面八方飞速增长的数据包围的年代,编写能够透视数据的模型总是一件诱人的事情。
以下是我们梳理的,依赖机器学习的一些应用(网站):Prismatic, Summly, Trifacta, CloudFlare, Twitter, Google, Facebook, Bidgely, Healthrageous, Predilytics, BloomReach, DataPop, Gravity.
用Prismatic分析个人兴趣图谱
现在,很难想象一家新成立的科技公司,完全不考虑用机器学习模型让他们的产品或者服务更加智能。甚至微软公司都将机器学习视为一个新的业务和收入增长点而投入巨资。
移动数据将成为人工智能(AI)的引擎
在天网发动机器推翻人类统治之前,我们手里的移动电话已经比我们自己更了解我们的下一步举动。Google的Project Glass增强现实眼镜已经出炉,类似的移动应用将捕获和产生大量个人数据。而机器学习、语音识别等技术,则能帮我们充分利用这些数据。
如今,移动应用知道我们去哪,我们的朋友是谁,我们的日程是什么,我们在网络上搜索什么。新一代应用如Siri、Saga和Google Now都试图扮演智能个人助理的角色,我们的电话知道我们在说什么,了解我们常去哪家餐馆吃饭,知道我们何时回家,工作或郊游。这些应用的开发者声称这些应用能为用户选择最佳赴约路线,城里某处有家从未光顾过的餐馆有我们最喜欢的菜。
一场大规模竞赛已经启动,开发者比拼谁的应用最智能,整合的数据最全面,以及如何在四寸大的屏幕上交付最美妙的用户体验。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29持证人简介 郭畅,CDA数据分析师二级持证人,安徽大学毕业,目前就职于徽商银行总行大数据部,两年工作经验,主要参与两项跨部 ...
2025-01-282025年刚开启,知乎上就出现了一个热帖: 2024年突然出现的经济下行,使各行各业都感觉到压力山大。有人说,大环境越来越不好了 ...
2025-01-27在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-01-26数据指标体系 “数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而 ...
2025-01-26在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-25俗话说的好“文不如表,表不如图”,图的信息传达效率很高,是数据汇报、数据展示的重要手段。好的数据展示不仅需要有图,还要选 ...
2025-01-24数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪70 ...
2025-01-24又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-23“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06