线性判别分析(Linear Discriminant Analysis, LDA)算法分析
一. LDA算法概述:
线性判别式分析(Linear Discriminant Analysis, LDA),也叫做Fisher线性判别(Fisher Linear Discriminant ,FLD),是模式识别的经典算法,它是在1996年由Belhumeur引入模式识别和人工智能领域的。性鉴别分析的基本思想是将高维的模式样本投影到最佳鉴别矢量空间,以达到抽取分类信息和压缩特征空间维数的效果,投影后保证模式样本在新的子空间有最大的类间距离和最小的类内距离,即模式在该空间中有最佳的可分离性。因此,它是一种有效的特征抽取方法。使用这种方法能够使投影后模式样本的类间散布矩阵最大,并且同时类内散布矩阵最小。就是说,它能够保证投影后模式样本在新的空间中有最小的类内距离和最大的类间距离,即模式在该空间中有最佳的可分离性。
假设对于一个空间有m个样本分别为x1,x2,……xm 即 每个x是一个n行的矩阵,其中表示属于i类的样本个数,假设有一个有c个类,则。
根据符号说明可得类i的样本均值为:
同理我们也可以得到总体样本均值:
根据类间离散度矩阵和类内离散度矩阵定义,可以得到如下式子:
当然还有另一种类间类内的离散度矩阵表达方式:
我们可以知道矩阵 的实际意义是一个协方差矩阵,这个矩阵所刻画的是该类与样本总体之间的关系,其中该矩阵对角线上的函数所代表的是该类相对样本总体的方差(即分散度),而非对角线上的元素所代表是该类样本总体均值的协方差(即该类和总体样本的相关联度或称冗余度),所以根据公式(3)可知(3)式即把所有样本中各个样本根据自己所属的类计算出样本与总体的协方差矩阵的总和,这从宏观上描述了所有类和总体之间的离散冗余程度。同理可以的得出(4)式中为分类内各个样本和所属类之间的协方差矩阵之和,它所刻画的是从总体来看类内各个样本与类之间(这里所刻画的类特性是由是类内各个样本的平均值矩阵构成)离散度,其实从中可以看出不管是类内的样本期望矩阵还是总体样本期望矩阵,它们都只是充当一个媒介作用,不管是类内还是类间离散度矩阵都是从宏观上刻画出类与类之间的样本的离散度和类内样本和样本之间的离散度。
LDA做为一个分类的算法,我们当然希望它所分的类之间耦合度低,类内的聚合度高,即类内离散度矩阵的中的数值要小,而类间离散度矩阵中的数值要大,这样的分类的效果才好。
这里我们引入Fisher鉴别准则表达式:
其中 为任一n维列矢量。Fisher线性鉴别分析就是选取使得达到最大值的矢量作为投影方向,其物理意义就是投影后的样本具有最大的类间离散度和最小的类内离散度。
我们把公式(4)和公式(3)代入公式(5)得到:
下面我们利用LDA进行一个分类的问题:假设一个产品有两个参数来衡量它是否合格,
我们假设两个参数分别为:
所以我们可以根据上图表格把样本分为两类,一类是合格的,一类是不合格的,所以我们可以创建两个数据集类:
cls1_data =
2.9500 6.6300
2.5300 7.7900
3.5700 5.6500
3.1600 5.4700
cls2_data =
2.5800 4.4600
2.1600 6.2200
3.2700 3.5200
其中cls1_data为合格样本,cls2_data为不合格的样本,我们根据公式(1),(2)可以算出合格的样本的期望值,不合格类样本的合格的值,以及总样本期望:
E_cls1 =
3.0525 6.3850
E_cls2 =
2.6700 4.7333
E_all =
2.8886 5.6771
我们可以做出现在各个样本点的位置:
图一
其中蓝色‘*’的点代表不合格的样本,而红色实点代表合格的样本,天蓝色的倒三角是代表总期望,蓝色三角形代表不合格样本的期望,红色三角形代表合格样本的期望。从x,y轴的坐标方向上可以看出,合格和不合格样本区分度不佳。
我们在可以根据表达式(3),(4)可以计算出类间离散度矩阵和类内离散度矩阵:
Sb =
0.0358 0.1547
0.1547 0.6681
Sw =
0.5909 -1.3338
-1.3338 3.5596
我们可以根据公式(7),(8)算出 特征值以及对应的特征向量:
L =
0.0000 0
0 2.8837
与他对应的特征向量为
V =
-0.9742 -0.9230
0.2256 -0.3848
根据取最大特征值对应的特征向量:(-0.9230,-0.3848),该向量即为我们要求的子空间,我们可以把原来样本投影到该向量后 所得到新的空间(2维投影到1维,应该为一个数字)
new_cls1_data =
-5.2741
-5.3328
-5.4693
-5.0216
为合格样本投影后的样本值
new_cls2_data =
-4.0976
-4.3872
-4.3727
为不合格样本投影后的样本值,我们发现投影后,分类效果比较明显,类和类之间聚合度很高,我们再次作图以便更直观看分类效果
图二
蓝色的线为特征值较小所对应的特征向量,天蓝色的为特征值较大的特征向量,其中蓝色的圈点为不合格样本在该特征向量投影下来的位置,二红色的‘*’符号的合格样本投影后的数据集,从中个可以看出分类效果比较好(当然由于x,y轴单位的问题投影不那么直观)。
我们再利用所得到的特征向量,来对其他样本进行判断看看它所属的类型,我们取样本点
(2.81,5.46),
我们把它投影到特征向量后得到:result = -4.6947 所以它应该属于不合格样本。
在传统特征脸方法的基础上,研究者注意到特征值打的特征向量(即特征脸)并一定是分类性能最好的方向,而且对K-L变换而言,外在因素带来的图像的差异和人脸本身带来的差异是无法区分的,特征连在很大程度上反映了光照等的差异。研究表明,特征脸,特征脸方法随着光线,角度和人脸尺寸等因素的引入,识别率急剧下降,因此特征脸方法用于人脸识别还存在理论的缺陷。线性判别式分析提取的特征向量集,强调的是不同人脸的差异而不是人脸表情、照明条件等条件的变化,从而有助于提高识别效果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30