热线电话:13121318867

登录
首页精彩阅读预测未来,最忌参考过去_数据分析师
预测未来,最忌参考过去_数据分析师
2014-11-26
收藏

预测未来,最忌参考过去_数据分析师

预测未来,最忌参考过去

如今我们做大量预测,Forrester 这种调研公司尤其喜欢通过图表预测设备销量、媒体广告支出,认为任何可量化的东西,它都可以被预测。这些预测报告通常有些常见模板,比如:

“今年,我们位于 X 轴的中心”、“我们可以看到在这个日期前有 3 个数据点”、“我们可以看到未来 X 年内,会有一个完美的线性发展趋势。”但是没人知道这有多蠢吗?

无广告社交项目 Ello 推出后不久,已经有人在预测它的用户数会“超过地球人口”。然后用同样方法,预测 2009 年美国智能手机销量,得到结论也相似,或者去预测移动端广告支出,他们可以傻到一直这么做。

不信?可以看看这些显著案例。

大数据
到底是什么让我们如此肯定: 2016 年搜索营销价值会接近 100 万美元?

大数据

有预测认为:2020 年食品和饮料在电子商务中只占很小份额。它完全不考虑那时人们生活可能是什么样,或者会有什么新行业或新技术出现。

我最喜欢的一张蠢成这样的图是下面这个,它蠢到没搞清楚我们现在是在几几年(图表中说我们现在身处 2015 年)。接下来是什么?预测无人驾驶汽车销量?或者 4D 打印机?还是智能机器人助理?

大数据
而你知不知道他们从不使用的图表?我们来把他们预测的和实际情况做下比较,真实的图表是下面这样的:

大数据

如上图,诺基亚一直做得很好,直到开始表现不佳。

大数据

如上图,音乐产业总是面对翻天覆变化,但现在开始直线下滑。

大数据

如上图,最生动的是印刷广告业的衰落。

当然,以上这些不是说 Forrester 很蠢或这些图表一文不值,只是说,真正的问题在于:未来其实很难预测,因为“未来”它从不是线性发展的。事实上,这个时代的一个关键要素是:事物有快速变化趋势。它可能是 Airbnb 在房屋租赁市场异军突起,可能是 Uber 改变人们出行方式,或是特斯拉在电动汽车领域掀起革命,或是 Apple pay 重塑支付行业。实际上,现实发展比我们想象的更快。

同时,不是所有事都在变,比如我点一杯咖啡的方式和十年前没什么不同;再比如我买衣物柔顺剂也一样,而银行模样,和 25 年前一样。

这其中,还有些事是周期性的,比如我们可能认为中国有史以来第一次变富,但历史表明:它一度是主要世界经济体。而还有很多事,它完全不受过去束缚,比如我现在把 Twitter 作为浏览器主页,没选择雅虎。我现在无休止看手机,无论何时我都在用非接触方式“使用”它。智能手机的崛起渐渐改变我们行为方式,产品不断数字化塑造全新的所有权模式,许多作为中间环节的行业已经快要消失,而新兴企业在网络效应下呈指数增长。许多事物的变化越来越快越来越快。

那面对这种变革,我们要做的,就不仅仅是根据历史演进做预测,而应该:

理解哪些事物发生了变化,哪些保持不变。
从足够远的过去学习,不要以为时间越近就越具参考价值,应该在更长的时间尺度发现相似案例。
做艺术化、移情预测,预测什么“现实”可能发生,而这些预测是基于想象力及已经定义边界后的“合理性”(based on imagination and defining edges to plausibility)。
其实我们很难说“将来”会是什么样,包括竞争对手的活动,新产品、新应用、新技术、世界经济、新规则、新商业模式都可能出现。但我们去对事情本身做“肠道检查”却没那么难,我们可以很容易排除一些事,并依次对另一些事做假设,设定一些可能场景,然后推断其合理性。

这样做可能不完美,但比那些预测未来的随机线条更可能正确,它建立我们对预测结果的一定程度的信心。

有人说,历史是伟大的老师,但事实真是如此吗?难道因为以前不流行六度空间理论,Facebook 就该放弃它的事业?难道我们应该向 WebVan 学习,就不去尝试电子商务?WebTV 彻底失败,Netflix 却大获成功。历史还告诉过我们,人们不信 4 分钟内可以跑一英里,认为背越式跳高不值得考虑,触屏手机无法正常工作。

所以也许对更大块的东西来说,“历史”是个更显得蹩脚的老师。

数据分析咨询请扫描二维码

最新资讯
更多
客服在线
立即咨询