电商平台中有海量的非结构化文本数据,如商品描述、用户评论、用户搜索词、用户咨询等。这些文本数据不仅反映了产品特性,也蕴含了用户的需求以及使用反馈。通过深度挖掘,可以精细化定位产品与服务的不足。下面描述了电商平台下机器学习在文本挖掘的应用例子。
1、用户评论分类
场景
用户评论能反映出用户对商品、服务的关注点和不满意点。评论从情感分析上可以分为正面与负面。细粒度上也可以将负面评论按照业务环节进行分类,便于定位哪个环节需要不断优化。
机器学习 模型
主题聚类、词向量计算。传统的机器学习分类模型在评论分类上的精度表现一般,但基于语义的角度进行分类可以有效提高精度。即便如此,在语义类别描述的特征挖掘时,机器学习中的主题聚类、词向量挖掘技术也不可或缺。
2、搜索词的需求识别
场景
用户搜索行为是电商平台上用户购物的常用入口,是用户需求的强体现。将用户搜索词分别归一到具体的品类需求,这是对搜索词的需求分类。
机器学习模型
基于用户点击模型和文本语义关联的模型,在整个过程中应用到回归预测、文本分类等。
3、商品标签挖掘
场景
通常电商平台需要对商品的功能或风格加上直观的标签,便于用户查找。那么如何从海量的商品描述去挖掘标签并给商品打上合适的标签呢。
机器学习模型
聚类与分类技术能大幅减轻人工上的操作。先对商品描述文本预处理,然后进行标签主题聚类,找出标签主题的词分布概率作为特征库。再根据主题标签对应的词分布概率,利用机器学习分类模型去预测商品所属的标签。
4、商品咨询挖掘
场景
商品咨询可以体现用户对商品的需求点,有利于需求与服务精确定位。
不管是咨询语料的特征词库挖掘,还是咨询短文本的意图识别,始终要以机器学习与自然语言处理技术作为基础。
另外,深度学习作为机器学习中的热门分支,不仅在图像和语音上有卓越的表现,在自然语言处理上也有应用亮点。
以用户的负面评论分类为例,浅析深度学习在自然语言处理上的应用。电商平台上,用户的负面评论的是千千万万细微而散落的点,但我们要将这些点聚集成若干个团,这是一个聚类问题。聚类处理后的点与团,如何直观的展示出来,这是个 数据可视化问题。
如图所示,我们抽取负面评论中与业务环节相关的语料进行训练,用WORD2VECTOR生成词向量,再通过PCA降维,将高维词向量低维化,然后将词在二维图上展示出来。可以直观的看出物流、售后、促销环节是关注点。
数据分析咨询请扫描二维码
数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10在快速发展的商业环境中,数据分析能力已经成为许多行业的核心竞争力。无论是初学者还是经验丰富的专家,搭建一个有效的数据分析 ...
2024-11-10在如今的数据驱动世界,数据分析师在各行各业中扮演着至关重要的角色。随着企业越来越依赖数据决策,数据分析职位的需求不断增加 ...
2024-11-10在信息爆炸的时代,做出正确的数据分析方法选择变得尤为重要。这不仅影响到数据分析的准确性,更关系到最终的决策效果。本文将详 ...
2024-11-10在当今竞争激烈的市场环境中,准确地把握市场动态和消费者需求是企业成功的关键。数据分析以其科学严谨的方法论,成为市场研究的 ...
2024-11-09