大数据自动分析法的崛起
十多年来,我谈论过的只有三类分析法:描述(descriptive)和预测(predictive)以及规范(prescriptive)分析。这个分析法三元组在我这里工作得非常好,很多其他人也在使用。
描述分析描述发生了什么,这类方法通常使用简单的描述工具:频次分布、图表以及“中心趋向性测度”(如均值、中值)。它们只和过去有关,习惯上称这类分析法为“报告”,它占据了大约95%的历史性分析活动。
预测性分析显而易见是预测未来。这类方法使用模型描述过去的数据(遗憾的是,我们只拥有过去的数据)外推(extrapolate)将来。它们很有用,正如Eric Siegel所著《预测分析法》(Predictive Analysis)中的章节标题:去“预测谁会点击、购买、撒谎或者死亡”。
有些分析家们,比如Gartner公司的分析家们,在描述和预测之间额外加入了一类分析,并称之为诊断(diagnostic)分析,用以描述如何使用过去的数据创建模型。说这些分析家是对的,在于这一工作是预测分析的先决条件;但有人仍对此有所争论,说它只是简单的使用统计模型的描述分析法。我也犹豫于在自己的工作中使用它,因为它不是以“-tive”结尾的单词。
规范分析(又译为时效分析)是告诉你“如何做”的分析方法,多年前在这里我已写过一些文字。这类方法建议(通常是给一线工作者)最好的方式去处理给定情况。例如:产品如何定价,使用哪个版本的网页,驾驶导航线路下一个转向是什么,所有这些都是规范分析。
现在,是时候添加第四个类别——自动分析(automated analytics)。遗憾的是,无论是单词“automated”或我所能找到的其同义词,都不是已“-tive“结尾。或许,新单词”automative“可能比较恰当。无论如何,分析法正在不断变得“自动“起来。不同于规范分析给人某个推荐,自动分析会基于分析结果采取行动。它们会自动改变在线价格,自动显示最好的着陆页(landing page),自动确定给用户发送什么邮件,甚至自动驾驶车辆。
一些自动分析已存在多年。你不会认为航空公司会派人来审核座位价格的变化吧?这样做需要所有雇员,甚至更多。你不会认为银行高级职员会审核你的信用卡或个人贷款申请吧?那些都是自动的,因为银行高级职员深思熟虑的,是你意图的收费或借款是否有欺诈。如果这些不是自动的,等到有人查看可能的欺诈交易的时候,欺诈者应当早已作案多起后飞到了委内瑞拉去了。
在这个用户期望实时响应的世界,自动分析日趋必要。在现实世界中,每个市场促销都应该是量身定制和个性化的,数据无处不在并且需要被分析后使其有用。我们确实没有足够的人力去分析所有数据,做所有的决定,进而采取必要的行动。即使我们这么做了,也会花费非常长的时间才能成这些事情。
自动分析,如同我所定义的,是基于分析法如何被使用。这个术语不应混淆于以自动或半自动方式,它们是通过如 机器学习 为工具来实现分析的生成。这种更为常见,且其存在也部分地基于同样原因——太多数据需要分析,且没有足够的分析师。
为了能有效的工作,自动化分析特别需要被嵌入到为分析提供数据的系统中,然后在得到分析结果后采取行动。Gartner 2015战略科技列表中的“高级的、普遍存在的和不可见的分析”,以及很多其它分析将被自动化。被嵌入自动化分析的那些系统,会被归为“复杂事件处理”家族,它们被设计为实时采取行动。在其数据仓库和Hadoop集群中,组织机构也日趋进行自动化分析。这一集成意味着,自动化分析需要被紧密连接到信息技术机构和CIO;这一类分析法不再是分开的、临时的行为。
这通常是一个贯穿不同类别分析法的自然发展过程。例如,你是一个货运公司,你想最小化你的汽油消耗。第一步,应该是做音协描述性分析,看看不同线路的卡车的耗油情况,耗油量延时间是增长还是下降,甚至于是否某些司机每公里耗油比其他司机多。第二步,应当是建立一个预测模型,其特性与更大的油耗相关联,或许使用某种形式的回归分析。第三步,应该是开始告诉司机什么时候在什么地点加油,这正是哟写公司,如施奈德(Schneider National),正在做的事。第四步,将是绕过驾驶员直接告诉卡车什么时候停车加油。显然,第四步包含比现在更多的车辆自动化,但若干领导性货运公司告诉我,从技术角度讲这一步并不遥远,监管许可反而可能需要更长时间。
当然,相比规范分析,自动分析给人类提出了更多的难题。试想,当卡车司机被告知在哪个停留站加油,他们会怎么想。我猜,当由分析算法做出所有驾驶决定的时候,司机们会更加不乐意。
自动分析是一个全新的世界,我们会长期持续地评价他们可能带来的后果。但是,越早认定它们是一类有效且重要的分析方法,就可以越快开始处理它们带来的后果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28