k-means聚类”—数据分析、数据挖掘
一、概要
区分两个概念:
hard clustering:一个文档要么属于类w,要么不属于类w,即文档对确定的类w是二值的1或0。
soft clustering:一个文档可以属于类w1,同时也可以属于w2,而且文档属于一个类的值不是0或1,可以是0.3这样的小数。
K-Means就是一种hard clustering,所谓K-means里的K就是我们要事先指定分类的个数,即K个。
k-means算法的流程如下:
1)从N个文档随机选取K个文档作为初始质心
2)对剩余的每个文档测量其到每个质心的距离,并把它归到最近的质心的类
3)重新计算已经得到的各个类的质心
4)迭代2~3步直至满足既定的条件,算法结束
在K-means算法里所有的文档都必须向量化,n个文档的质心可以认为是这n个向量的中心,计算方法如下:
这里加入一个方差RSS的概念:
RSSk的值是类k中每个文档到质心的距离,RSS是所有k个类的RSS值的和。
算法结束条件:
1)给定一个迭代次数,达到这个次数就停止,这好像不是一个好建议。
2)k个质心应该达到收敛,即第n次计算出的n个质心在第n+1次迭代时候位置不变。
3)n个文档达到收敛,即第n次计算出的n个文档分类和在第n+1次迭代时候文档分类结果相同。
4)RSS值小于一个阀值,实际中往往把这个条件结合条件1使用
回过头用RSS讨论质心的计算方法是否合理
为了取得RSS的极小值,RSS对质心求偏导数应该为0,所以得到质心
可见,这个质心的选择是合乎数学原理的。
K-means方法的缺点是聚类结果依赖于初始选择的几个质点位置,看下面这个例子:
如果使用2-means方法,初始选择d2和d5那么得到的聚类结果就是{d1,d2,d3}{d4,d5,d6},这不是一个合理的聚类结果
解决这种初始种子问题的方案:
1)去处一些游离在外层的文档后再选择
2)多选一些种子,取结果好的(RSS小)的K个类继续算法
3)用层次聚类的方法选择种子。我认为这不是一个合适的方法,因为对初始N个文档进行层次聚类代价非常高。
以上的讨论都是基于K是已知的,但是我们怎么能从随机的文档集合中选择这个k值呢?
我们可以对k去1~N分别执行k-means,得到RSS关于K的函数下图:
当RSS由显著下降到不是那么显著下降的K值就可以作为最终的K,如图可以选择4或9。
四、算法及示例
k 均值算法的计算过程非常直观:
1、从D 中随机取k 个元素,作为k 个簇的各自的中心。
2、分别计算剩下的元素到k 个簇中心的相异度,将这些元素分别划归到相异度最低的簇。
3、根据聚类结果,重新计算k 个簇各自的中心,计算方法是取簇中所有元素各自维度的算术平均数。
4、将D 中全部元素按照新的中心重新聚类。
5、重复第4 步,直到聚类结果不再变化。
6、将结果输出。
由于算法比较直观,没有什么可以过多讲解的。下面,我们来看看k-means 算法一个有趣的应用示例:中国男足近几年到底在亚洲处于几流水平?
今年中国男足可算是杯具到家了,几乎到了过街老鼠人人喊打的地步。对于目前中国男足在亚洲的地位,各方也是各执一词,有人说中国男足亚洲二流,有人说三流,还有人说根本不入流,更有人说其实不比日韩差多少,是亚洲一流。既然争论不能解决问题,我们就让数据告诉我们结果吧。
下图是采集的亚洲15 只球队在2005 年-2010 年间大型杯赛的战绩(由于澳大利亚是后来加入亚足联的,所以这里没有收录)。
其中包括两次世界杯和一次亚洲杯。我提前对数据做了如下预处理:对于世界杯,进入决赛圈则取其最终排名,没有进入决赛圈的,打入预选赛十强赛赋予40,预选赛小组未出线的赋予50。对于亚洲杯,前四名取其排名,八强赋予5,十六强赋予9,预选赛没出现的赋予17。这样做是为了使得所有数据变为标量,便于后续聚类。
下面先对数据进行[0,1]规格化,下面是规格化后的数据:
其中包括两次世界杯和一次亚洲杯。我提前对数据做了如下预处理:对于世界杯,进入决赛圈则取其最终排名,没有进入决赛圈的,打入预选赛十强赛赋予40,预选赛小组未出线的赋予50。对于亚洲杯,前四名取其排名,八强赋予5,十六强赋予9,预选赛没出现的赋予17。这样做是为了使得所有数据变为标量,便于后续聚类。
下面先对数据进行[0,1]规格化,下面是规格化后的数据:
从做到右依次表示各支球队到当前中心点的欧氏距离,将每支球队分到最近的簇,可对各支球队做如下聚类:
中国C,日本A,韩国A,伊朗A,沙特A,伊拉克C,卡塔尔C,阿联酋C,乌兹别克斯坦B,泰国C,越南C,阿曼C,巴林B,朝鲜B,印尼C。
第一次聚类结果:
A:日本,韩国,伊朗,沙特;
B:乌兹别克斯坦,巴林,朝鲜;
C:中国,伊拉克,卡塔尔,阿联酋,泰国,越南,阿曼,印尼。
下面根据第一次聚类结果,调整各个簇的中心点。
A 簇的新中心点为: {(0.3+0+0.24+0.3)/4=0.21,(0+0.15+0.76+0.76)/4=0.4175,(0.19+0.13+0.25+0.06)/4=0.1575} = {0.21, 0.4175, 0.1575}
用同样的方法计算得到B 和C 簇的新中心点分别为{0.7, 0.7333, 0.4167},{1, 0.94,0.40625}。
用调整后的中心点再次进行聚类,得到:
第二次迭代后的结果为:
中国C,日本A,韩国A,伊朗A,沙特A,伊拉克C,卡塔尔C,阿联酋C,乌兹别克斯坦B,泰国C,越南C,阿曼C,巴林B,朝鲜B,印尼C。
结果无变化,说明结果已收敛,于是给出最终聚类结果:
亚洲一流:日本,韩国,伊朗,沙特
亚洲二流:乌兹别克斯坦,巴林,朝鲜
亚洲三流:中国,伊拉克,卡塔尔,阿联酋,泰国,越南,阿曼,印尼
看来数据告诉我们,说国足近几年处在亚洲三流水平真的是没有冤枉他们,至少从国际杯赛战绩是这样的。
其实上面的分析数据不仅告诉了我们聚类信息,还提供了一些其它有趣的信息,例如从中可以定量分析出各个球队之间的差距,例如,在亚洲一流队伍中,日本与沙特水平最接近,而伊朗则相距他们较远,这也和近几年伊朗没落的实际相符。另外,乌兹别克斯坦和巴林虽然没有打进近两届世界杯,不过凭借预算赛和亚洲杯上的出色表现占据B 组一席之地,而朝鲜由于打入了2010 世界杯决赛圈而有幸进入B 组,可是同样奇迹般夺得2007年亚洲杯的伊拉克却被分在三流,看来亚洲杯冠军的分量还不如打进世界杯决赛圈重啊。其它有趣的信息,有兴趣的朋友可以进一步挖掘。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel是数据分析的重要工具,强大的内置功能使其成为许多分析师的首选。在日常工作中,启用Excel的数据分析工具库能够显著提升数 ...
2024-12-23在当今信息爆炸的时代,数据分析师如同一位现代社会的侦探,肩负着从海量数据中提炼出有价值信息的重任。在这个过程中,掌握一系 ...
2024-12-23在现代的职场中,制作吸引人的PPT已经成为展示信息的重要手段,而其中数据对比的有效呈现尤为关键。为了让数据在幻灯片上不仅准 ...
2024-12-23在信息泛滥的现代社会,数据分析师已成为企业决策过程中不可或缺的角色。他们的任务是从海量数据中提取有价值的洞察,帮助组织制 ...
2024-12-23在数据驱动时代,数据分析已成为各行各业的必需技能。无论是提升个人能力还是推动职业发展,选择一条适合自己的学习路线至关重要 ...
2024-12-23在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17