京公网安备 11010802034615号
经营许可证编号:京B2-20210330
k-means聚类”—数据分析、数据挖掘
一、概要
区分两个概念:
hard clustering:一个文档要么属于类w,要么不属于类w,即文档对确定的类w是二值的1或0。
soft clustering:一个文档可以属于类w1,同时也可以属于w2,而且文档属于一个类的值不是0或1,可以是0.3这样的小数。
K-Means就是一种hard clustering,所谓K-means里的K就是我们要事先指定分类的个数,即K个。
k-means算法的流程如下:
1)从N个文档随机选取K个文档作为初始质心
2)对剩余的每个文档测量其到每个质心的距离,并把它归到最近的质心的类
3)重新计算已经得到的各个类的质心
4)迭代2~3步直至满足既定的条件,算法结束
在K-means算法里所有的文档都必须向量化,n个文档的质心可以认为是这n个向量的中心,计算方法如下:
这里加入一个方差RSS的概念:
RSSk的值是类k中每个文档到质心的距离,RSS是所有k个类的RSS值的和。
算法结束条件:
1)给定一个迭代次数,达到这个次数就停止,这好像不是一个好建议。
2)k个质心应该达到收敛,即第n次计算出的n个质心在第n+1次迭代时候位置不变。
3)n个文档达到收敛,即第n次计算出的n个文档分类和在第n+1次迭代时候文档分类结果相同。
4)RSS值小于一个阀值,实际中往往把这个条件结合条件1使用
回过头用RSS讨论质心的计算方法是否合理
为了取得RSS的极小值,RSS对质心求偏导数应该为0,所以得到质心
可见,这个质心的选择是合乎数学原理的。
K-means方法的缺点是聚类结果依赖于初始选择的几个质点位置,看下面这个例子:
如果使用2-means方法,初始选择d2和d5那么得到的聚类结果就是{d1,d2,d3}{d4,d5,d6},这不是一个合理的聚类结果
解决这种初始种子问题的方案:
1)去处一些游离在外层的文档后再选择
2)多选一些种子,取结果好的(RSS小)的K个类继续算法
3)用层次聚类的方法选择种子。我认为这不是一个合适的方法,因为对初始N个文档进行层次聚类代价非常高。
以上的讨论都是基于K是已知的,但是我们怎么能从随机的文档集合中选择这个k值呢?
我们可以对k去1~N分别执行k-means,得到RSS关于K的函数下图:
当RSS由显著下降到不是那么显著下降的K值就可以作为最终的K,如图可以选择4或9。
四、算法及示例
k 均值算法的计算过程非常直观:
1、从D 中随机取k 个元素,作为k 个簇的各自的中心。
2、分别计算剩下的元素到k 个簇中心的相异度,将这些元素分别划归到相异度最低的簇。
3、根据聚类结果,重新计算k 个簇各自的中心,计算方法是取簇中所有元素各自维度的算术平均数。
4、将D 中全部元素按照新的中心重新聚类。
5、重复第4 步,直到聚类结果不再变化。
6、将结果输出。
由于算法比较直观,没有什么可以过多讲解的。下面,我们来看看k-means 算法一个有趣的应用示例:中国男足近几年到底在亚洲处于几流水平?
今年中国男足可算是杯具到家了,几乎到了过街老鼠人人喊打的地步。对于目前中国男足在亚洲的地位,各方也是各执一词,有人说中国男足亚洲二流,有人说三流,还有人说根本不入流,更有人说其实不比日韩差多少,是亚洲一流。既然争论不能解决问题,我们就让数据告诉我们结果吧。
下图是采集的亚洲15 只球队在2005 年-2010 年间大型杯赛的战绩(由于澳大利亚是后来加入亚足联的,所以这里没有收录)。
其中包括两次世界杯和一次亚洲杯。我提前对数据做了如下预处理:对于世界杯,进入决赛圈则取其最终排名,没有进入决赛圈的,打入预选赛十强赛赋予40,预选赛小组未出线的赋予50。对于亚洲杯,前四名取其排名,八强赋予5,十六强赋予9,预选赛没出现的赋予17。这样做是为了使得所有数据变为标量,便于后续聚类。
下面先对数据进行[0,1]规格化,下面是规格化后的数据:
其中包括两次世界杯和一次亚洲杯。我提前对数据做了如下预处理:对于世界杯,进入决赛圈则取其最终排名,没有进入决赛圈的,打入预选赛十强赛赋予40,预选赛小组未出线的赋予50。对于亚洲杯,前四名取其排名,八强赋予5,十六强赋予9,预选赛没出现的赋予17。这样做是为了使得所有数据变为标量,便于后续聚类。
下面先对数据进行[0,1]规格化,下面是规格化后的数据:
从做到右依次表示各支球队到当前中心点的欧氏距离,将每支球队分到最近的簇,可对各支球队做如下聚类:
中国C,日本A,韩国A,伊朗A,沙特A,伊拉克C,卡塔尔C,阿联酋C,乌兹别克斯坦B,泰国C,越南C,阿曼C,巴林B,朝鲜B,印尼C。
第一次聚类结果:
A:日本,韩国,伊朗,沙特;
B:乌兹别克斯坦,巴林,朝鲜;
C:中国,伊拉克,卡塔尔,阿联酋,泰国,越南,阿曼,印尼。
下面根据第一次聚类结果,调整各个簇的中心点。
A 簇的新中心点为: {(0.3+0+0.24+0.3)/4=0.21,(0+0.15+0.76+0.76)/4=0.4175,(0.19+0.13+0.25+0.06)/4=0.1575} = {0.21, 0.4175, 0.1575}
用同样的方法计算得到B 和C 簇的新中心点分别为{0.7, 0.7333, 0.4167},{1, 0.94,0.40625}。
用调整后的中心点再次进行聚类,得到:
第二次迭代后的结果为:
中国C,日本A,韩国A,伊朗A,沙特A,伊拉克C,卡塔尔C,阿联酋C,乌兹别克斯坦B,泰国C,越南C,阿曼C,巴林B,朝鲜B,印尼C。
结果无变化,说明结果已收敛,于是给出最终聚类结果:
亚洲一流:日本,韩国,伊朗,沙特
亚洲二流:乌兹别克斯坦,巴林,朝鲜
亚洲三流:中国,伊拉克,卡塔尔,阿联酋,泰国,越南,阿曼,印尼
看来数据告诉我们,说国足近几年处在亚洲三流水平真的是没有冤枉他们,至少从国际杯赛战绩是这样的。
其实上面的分析数据不仅告诉了我们聚类信息,还提供了一些其它有趣的信息,例如从中可以定量分析出各个球队之间的差距,例如,在亚洲一流队伍中,日本与沙特水平最接近,而伊朗则相距他们较远,这也和近几年伊朗没落的实际相符。另外,乌兹别克斯坦和巴林虽然没有打进近两届世界杯,不过凭借预算赛和亚洲杯上的出色表现占据B 组一席之地,而朝鲜由于打入了2010 世界杯决赛圈而有幸进入B 组,可是同样奇迹般夺得2007年亚洲杯的伊拉克却被分在三流,看来亚洲杯冠军的分量还不如打进世界杯决赛圈重啊。其它有趣的信息,有兴趣的朋友可以进一步挖掘。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31