京公网安备 11010802034615号
经营许可证编号:京B2-20210330
散点图通常是用来表述两个连续变量之间的关系,图中的每个点表示目标数据集中的每个样本。
同时散点图中常常还会拟合一些直线,以用来表示某些模型。
本例选用如下测试数据集:
绘制方法是首先调用ggplot函数选定数据集,并在aes参数中指明横轴纵轴。然后调用散点图函数geom_point()便可绘制出基本散点图。R语言示例代码如下:
运行结果:
基于颜色和点形对数据进行分组
本例选用如下测试数据集:
绘制方法是在基础散点图之上再在基函数的美学参数集里设置一个美学变量。可指定colour或者shape两种参数,分别将不同分组以不同颜色/点形表述。R语言示例代码(基于颜色分组)如下:
运行结果:
R语言示例代码(基于点形分组)如下:
运行结果:
说明:可自定义点形,共有大概36种点形可供选择。具体请参考R语言ggplot2手册。
本例选用如下测试数据集:
上一个示例中,映射到分组的变量是离散型变量。而对于除了横轴纵轴之外的连续型变量,也可以映射到散点图的色深和点大小上。R语言示例代码(绑定颜色)如下:
运行结果:
R语言示例代码(绑定大小)如下:
运行结果:
本例选用如下测试数据集:
如果图中的散点重叠现象比较严重,可以在散点图中设置散点的透明度来进行可视化。R语言示例代码如下:
运行结果:
本例选用如下测试数据集:
如果需要网散点图中添加回归模型拟合线,最主要是调用stat_smooth()函数。R语言示例代码如下:
运行结果:
线段为曲线是因为参与拟合模型为局部线性回归模型。往geom_smooth()函数中加入”method = lm”即可拟合经典线性回归。结果如下图:
本例选用如下测试数据集:
上面一小节展示了用全局/局部回归模型拟合样本点并展示拟合线段,它使用ggplot2提供的geom_smooth()函数自动拟合并完成绘制。
但在更多时候,我们会使用其他包的模型(非ggplot2内置模型)拟合。针对这种情况,我们需要自定义一个函数。该函数接受模型、横纵轴名、横轴范围、横轴样本点数量等参数,输出一个包含预测变量和预测值的数据框。R语言实现代码如下:
在使用其他模型建模好之后,将新的模型等各参数传递进上述函数,便得到预测结果数据集。最后将新的数据集输出为折线图即可。
下面展示一个略微复杂的例子,它将数据集根据不同性别分为两组,分别建立回归模型并绘制其拟合线。R语言实现代码如下:
运行结果:
本例选用如下测试数据集:
方法很简单,在原先散点图绘制函数的基础上增加边际地毯函数就行。R语言实现代码如下:
运行结果:
本例选用如下测试数据集:
往散点图中添加标签的方法也很简单,在原有散点图函数的基础上增加文本函数即可。R语言实现代码如下:
运行结果:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26