怎样才能正确利用数据来抓住目标用户?
运营人员通常比较关心的一个问题是:用什么样的方法来重新获取已经流失的用户?今天我们来谈谈有哪些关键的指导策略,怎样才能正确利用数据来抓住你的目标用户?
一般情况下,当运营人员谈到重新获取用户的方法时,通常指的是策划一些活动通过消息推送的方式来激励那些已经流失的用户,使他们重新回来。但这个大家都在用的方法一般都得不到好的效果,为什么呢?原因在于他们是在“战役失败”了以后才采取措施。
当你发现用户流失后,会不顾一切的策划活动。比如:一个很大的折扣或者某些促销手段,但往往换来的是那些给你带来利润最少和维护成本最高的用户。结果证明:这是一个失败的策略。一旦你的应用被用户“打入冷宫”,几乎没有办法唤醒这些流失的用户。你需要做的是,在用户流失之前就抓住他们。这才是正确的选择。
某App新增用户留存数据:第2天和第5天用户留存率较低
那么问题来了,怎样才能留住更多的用户并防止他们流失呢?这就需要应用在每次和用户的交互过程中,能更进一步的了解他们的需求,提升他们的体验,提高用户的满意度。这听起来也许并不复杂,但要真正做好也并不容易,不过总结下来,真正需要做的就是聪明地利用好你的用户行为数据。那么具体如何做?
以下我们给出了4点建议,能够确保你把劲使在了对的地方:
如果花点心思,你就会从你的用户行为数据中发现:有明显的迹象显示用户目前处于什么样的阶段。这需要你观察发现,分析决策并且去行动。其中一个方法是使用用户的生命周期法,定义用户处于一个什么样的生命阶段,在这个阶段中去分析。
首先,针对你的产品业务,整理出用户的生命周期分成哪几个阶段,可以根据你的需要划分得足够细致。比如可以分成:
早期刚进入的阶段
被吸引的阶段
处于流失风险的阶段
流失了的阶段。
然后,你需要定义清楚每个阶段用户是什么样的。
例如:对于电商类应用,早期刚进入的阶段,可以定义为一个用户在他首次购买后15天内的阶段。一个被吸引的用户阶段,可以定义为该用户有至少三次购买或者在一周内访问你的应用超过了10次。另外要确保你对用户生命周期的分类是一个闭环状态,在特定的时间,每个用户都只处于一个阶段,这是用户生命周期得以实行的必要条件。
在定义了不同的用户生命周期阶段之后,你要有可以用来建立用户分类的行为数据。对比一个处在被吸引阶段的用户和一个处于流失风险的用户之间本质上有哪些区别,据此来建立数据模型。搞清楚这些,对用户生命周期每个阶段的建模至关重要。
通过数据识别出哪些用户对你的产品满意,分析他们的行为数据,这些分析结果对于策划营销活动,做精细化运营有着方向性的指导意义。严格的定义加上可以衡量的行为,就可以给用户打标签并分类进行画像,并且能够知道那些处于流失风险的客户需要你做出什么样的决策来进行挽回。
怎么区分一个好的用户和一个坏的用户?那些让你赚到最多钱的用户与那些实际上花掉你钱和资源的用户,哪个是好的哪个是坏的?要分清这些,首先要确立一个平均的用户终生价值,再结合维护不同用户的成本,并将成本整合到他的用户价值中去。
举个例子:有一些用户,他们重度消费了你们的免费支持服务,有些用户令你花费时间去处理很多但很没有必要的数据。把成本考虑进去能帮助你提高划分结果的准确性,并且能够保证哪些是你所关注的、想要留住的目标用户。你也可以增加一些生命周期的阶段来匹配那些利润相对较低的用户,并针对这一人群策划一些营销方案,精准化运营。考虑到他们的终生价值,你也可以直接把他们从你策划的某次活动中去除。
有些你认为很好的运营方案很可能会造成用户的流失。那么如何防止这样的事情发生?这就需要避免只依赖于活动的指标来衡量活动的成功与否,而应该全方位综合来考虑。试想这样一种场景:你策划了一次活动并通过消息推送通知了全部用户,立马发现了转化率的大幅度提高,购买增长,于是你觉得这次活动运营很成功,并且准备继续推行这个方法。但事实上,这次活动反而导致部分用户取消了消息推送功能,甚至卸载了app。这正是在你采取这项推广活动时发生的,你没有考虑用户的全局信息,没有对他们区别对待,不明确他们和你的品牌的关系,这是冒着牺牲未来的风险换来的蝇头小利。
这时就需要对用户进行精细化运营,应该将用户的整个生命时期考虑进来,衡量并跟踪用户在每个时期的情况,而不是只关注活动实行后的立刻的变化。你可以这么做,把用户分成两部分,一部分用户不对他们做任何推送,而对另一部分用户实行活动推送,定期地比较这两组用户的价值。对于关注长期的用户留存和用户参与度有很大的帮助。
我们正在一步步地进入到数据驱动决策的运营时代,以后将会很少见到类似赢回流失用户这样的的策略,更多的是提高用户留存率以及活跃度,策划如何驱动用户真正价值的推广活动。运用户生命周期的框架并不是新提出来的,但做到这些的前提是我们能够准确收集到用户的行为数据,只有这样才能将它成熟地运用起来。如果在你的运营工作中做到以上几点,你将会更了解你的用户,知道哪些用户值得你投入,将你的资源发挥最大的价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31