用主成分法解决多重共线性问题
一、多重共线性的表现
线性回归模型中的解释变量之间由于存在精确相关关系或高度相关关系。看似相互独立的指标本质上是相同的,是可以相互代替的,但是完全共线性的情况并不多见,一般出现的是在一定程度上的共线性,即近似共线性。
二、多重共线性的后果
1.理论后果
多重共线性是因为变量之间的相关程度比较高。
按布兰查德认为, 在计量经济学中, 多重共线性实质上是一个“微数缺测性”问题,就是说多重共线性其实是由样本容量太小所造成,当样本容量越小,多重共线性越严重。
多重共线性的理论主要后果:
(1)完全共线性下参数估计量不存在;
(2)近似共线性下OLS估计量非有效;
(3)模型的预测功能失效;
(4)参数估计量经济含义不合理
2.现实后果
(1)各个解释变量对指标最后结论影响很难精确鉴别;
(2)置信区间比原本宽,使得接受假设的概率更大;
(3)统计量不显著;
(4)拟合优度的平方会很大;
(5)OLS估计量及其标准误对数据微小的变化也会很敏感。
三、多重共线性产生的原因
2. 由于研究的经济变量随时间往往有共同的变化趋势,他们之间存在着共性。例如当经济繁荣时,反映经济情况的指标有可能按着某种比例关系增长
3. 滞后变量。滞后变量的引入也会产生多重共线行,例如本期的消费水平除受本期的收入影响之外,还有可能受前期的收入影响,建立模型时,本期的收入水平就有可能和前期的收入水平存在着共线性。
四、多重共线性的识别
1.方差扩大因子法( VIF)
一般认为如果最大的VIF超过10,常常表示存在多重共线性。
2.容差容忍定法
如果容差(tolerance)<=0.1,常常表示存在多重共线性。
3. 条件索引
条件索引(condition index)>10,可以说明存在比较严重的共线性。
五、多重共线性的处理方法
处理方法有多重增加样本容量、剔除因子法、PLS(偏最小二乘法)、岭回归法、主成分法。
今天着重介绍——主成分法。
当自变量间有较强的线性相关性时,利用个p个变量的主成分,所具有的性质,如果他们是互不相关的,可由前m个主成z1、z2、zm来建立回归模型。
由原始变量的观测数据计算前个主成分的得分值,将其作为主成分的观测值,建立Y与主成分的回归模型即得回归方程。这时p元降为m元,这样既简化了回归方程的结构,且消除了变量间相关性带来的影响
六、实际的应用
我们以下这个模型分析主营业务利润的影响
Opinci,t=a0+a1*Intani,t+a2*Ppei,t+a3*Opinci,t-1+a4*Levi,t+a5*Asseti,t +ξi,t
1、回归分析
2、结果
对自变量主成分法从多重共线性的识别方法来看,此模型中存在共线性问题,Ppei,t是影响因子。
3、对自变量主成分法
由于spss没有独立的主成分分析模块,需要在因子分析里完成,因此需要特别注意。
在数据窗口下选择“分析”—“降维”—“因子分析。
3.1 结果
从KMO 和 Bartlett 的检验得知p<0.001,KMO检验通过,适合做主成分或因子分析,从解释的总方差表里初始特征值两个主成分(初始因子)贡献率已达86.89%,提取前两个主成分用于分析。
由成分矩阵和表解释的总方差可计算前两个特征向量,用成分矩阵前两列分别除以前两个特征值的平方根得前两个主成分表达式:
F1=0.4726Opinci,t-1+0.4854 Instani,t +0.5371Ppei,t+ 0.0534Levi,t+ 0.4995Asseti,t(式1)
F2=-0.1219Opinci,t-1-0.0510Instani,t -0.0497 Ppei,t+ 0.9837Levi,t+0.1131 Asseti,t(式2)
其中Opinci,t-1、 Instani,t 、Ppei,t、 Levi,t、 Asseti,t表示为标准化变量(这是因为在进行主成分分析时是以标准化变量进行分析的,是从相关阵出发分析的)
由于主成分互不相关,可以用提取的主成分代替自变量进行回归分析,因此需要计算主成分得分来代替自变量Opinci,t-1、 Instani,t 、Ppei,t、 Levi,t、 Asseti,t。
主成分的计算:依据式1和2中两个主成分的表达式,对各自变量标准化后带入就可以计算出每个样品的主成分得分。
但是在spss中,由因子分析提取时是用主成分法提取的,根据初始因子与主成分的关系,未旋转的初始因子等于主成分除以特征根的平方根,因此主成分得分等于因子得分乘以特征根的平方根,可以由因子得分计算主成分得分。
前面在因子分析选项中保存了因子得分(因子得分保存变量),因此计算两个主成分得分:点击“转换”—“计算变量”。
在弹出的窗口分别定义主成分
F1=第一因子得分*第一特征根的平方根
F2=第二因子得分*第二特征根的平方根
(3)主成分回归过程
要做主成分回归,需要用标准化的因变量(因为自变量经过标准化处理做主成分分析,因变量需要对应做标准化)与主成分做回归,对因变量Opinci,t做标准化处理。
点击“分析”-“描述统计”-“描述”,在弹出窗口中将Opinci,t调入变量,并选中“将标准化得分另存为变量”后确定完成Opinci,t的标准化。
点击“分析”-“回归”-“线性”在弹出窗口中将Z主营业务利润(y)调入因变量,F1和F2调入自变量,其他选项如前,然后点击“确定”运行主成分回归。
相关输出结果:
由表可知,标准化Opinci,t对两个主成分的线性回归p<0.001,通过显著性检验,没有多重共线性,回归系数合理。
Zscore:(Opinci,t) =0.475F1-0.117F2,将前面F1、F2的表达式(式1和2)带入可得标准化Opinci,t关于标准化自变量的回归方程:
Zscore:(Opinci,t)=
0.2388Opinci,t-1+0.2365Instani,t +0.2609Ppei,t-0.0897Levi,t+ 0.2240Asseti,t
求得最终回归结果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30