
数据
关于NMF,在隐语义模型和NMF(非负矩阵分解)已经有过介绍。
运行后输出:
可视化物品的主题分布:
结果:
从距离的角度来看,item 5和item 6比较类似;从余弦相似度角度看,item 2、5、6 比较相似,item 1、3比较相似。
可视化用户的主题分布:
结果:
从距离的角度来看,Fred、Ben、Tom的口味差不多;从余弦相似度角度看,Fred、Ben、Tom的口味还是差不多。
现在对于用户A,如何向其推荐物品呢?
方法1: 找出与用户A最相似的用户B,将B评分过的、评分较高、A没评分过的的若干物品推荐给A。
方法2: 找出用户A评分较高的若干物品,找出与这些物品相似的、且A没评分的若干物品推荐给A。
方法3: 找出用户A最感兴趣的k个主题,找出最符合这k个主题的、且A没评分的若干物品推荐给A。
方法4: 由NMF得到的两个矩阵,重建评分矩阵。例如:
运行结果:
对于Tom(评分矩阵的第2行),其未评分过的物品是item 2、item 3、item 4。item 2的推荐值是2.19148602,item 3的推荐值是1.73560797,item 4的推荐值是0,若要推荐一个物品,推荐item 2。
NMF是将非负矩阵V分解为两个非负矩阵W和H:
V=W×H
在本文上面的实现中,V对应评分矩阵,W是用户的主题分布,H是物品的主题分布。
对于有评分记录的新用户,如何得到其主题分布?
方法1: 有评分记录的新用户的评分数据放入评分矩阵中,使用NMF处理新的评分矩阵。
方法2: 物品的主题分布矩阵H保持不变,将V更换为新用户的评分组成的行向量,求W即可。
下面尝试一下方法2。
设新用户Bob的评分记录为:
运行结果是:
关于SVD的一篇好文章:强大的矩阵奇异值分解(SVD)及其应用。
相关分析与上面类似,这里就直接上代码了。
运行结果:
可视化一下:
0代表没有评分,但是上面的方法(如何推荐这一节的方法4)又确实把0看作了评分,所以最终得到的只是一个推荐值(而且总体都偏小),而无法当作预测的评分。在How do I use the SVD in collaborative filtering?有这方面的讨论。
SVD的目标是将m*n大小的矩阵A分解为三个矩阵的乘积:
[latex]
A = U S V^{T}
[/latex]
U和V都是正交矩阵,大小分别是m*m、n*n。S是一个对角矩阵,大小是m*n,对角线存放着奇异值,从左上到右下依次减小,设奇异值的数量是r。
取k,k<<r。
取得UU的前k列得到UkUk,SS的前k个奇异值对应的方形矩阵得到SkSk,VTVT的前k行得到VTkVkT,于是有
[latex]
A_{k} = U_{k} S_{k} V^{T}_{k}
[/latex]
AkAk可以认为是AA的近似。
这个算法来自下面这篇论文:
Vozalis M G, Margaritis K G. Applying SVD on Generalized Item-based Filtering[J]. IJCSA, 2006, 3(3): 27-51.
1、 设评分矩阵为R,大小为m*n,m个用户,n个物品。R中元素rijrij代表着用户uiui对物品ijij的评分。
2、 预处理R,消除掉其中未评分数据(即值为0)的评分。
计算R中每一行的平均值(平均值的计算中不包括值为0的评分),令Rfilled−in=RRfilled−in=R,然后将Rfilled−inRfilled−in中的0设置为该行的平均值。
计算R中每一列的平均值(平均值的计算中不包括值为0的评分)riri,Rfilled−inRfilled−in中的所有元素减去对应的riri,得到正规化的矩阵RnormRnorm。(norm,即normalized)。
3、 对RnormRnorm进行奇异值分解,得到:
[latex]
R_{norm} = U S V^{T}
[/latex]
4、 设正整数k,取得UU的前k列得到UkUk,SS的前k个奇异值对应的方形矩阵得到SkSk,VTVT的前k行得到VTkVkT,于是有
[latex]
R_{red} = U_{k} S_{k} V^{T}_{k}
[/latex]
red,即dimensionality reduction中的reduction。可以认为k是指最重要的k个主题。定义RredRred中元素rrijrrij用户i对物品j在矩阵RredRred中的值。
5、 [latex] U_{k} S_{k}^{\frac{1}{2}}[/latex],是用户相关的降维后的数据,其中的每行代表着对应用户在新特征空间下位置。[latex] S_{k}^{\frac{1}{2}}V^{T}_{k}[/latex],是物品相关的降维后的数据,其中的每列代表着对应物品在新特征空间下的位置。
S12k∗VTkSk12∗VkT中的元素mrijmrij代表物品j在新空间下维度i中的值,也可以认为是物品j属于主题i的程度。(共有k个主题)。
6、 获取物品之间相似度。
根据S12k∗VTkSk12∗VkT计算物品之间的相似度,例如使用余弦相似度计算物品j和f的相似度:
相似度计算出来后就可以得到每个物品最相似的若干物品了。
7、 使用下面的公式预测用户a对物品j的评分:
这个公式里有些变量的使用和上面的冲突了(例如k)。
ll是指取物品j最相似的ll个物品。
mrijmrij代表物品j在新空间下维度i中的值,也可以认为是物品j属于主题i的程度。
simjksimjk是物品j和物品k的相似度。
RredRred中元素rrakrrak是用户a对物品k在矩阵RredRred中对应的评分。ra¯ra¯是指用户a在评分矩阵RR中评分的平均值(平均值的计算中不包括值为0的评分)。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10