解密Airbnb的数据科学部门如何使用R语言
我之所以在aribnb希望成为一名数据科学家是因为这里可以有一个非常多元化的团队来一起解决重要的现实问题。我们不仅仅在性别上多样化,而且在教育背景和工作经历也是霄壤之别。我们的团队包括数理统计的专家,从教育学到基因计算的博士,甚至也包括前职业桥牌选手和退伍老兵。这个训练和经历的差异性是我们团队创造性思维的强大源泉动力和理解用户的最好武器,但是它在团队协作和知识共享上也对我们提出了挑战。新加入Airbnb的团队成员通常都掌握各式各样的编程语言,包括R、Python、Matlab、Stata、SAS或者SPSS。为了扩大协作范围,我们借助工具、培训和基础设施来统一我们的数据科学品牌。本文,我们将专注于我们在Airbnb所构建的R语言工具和一些列的R语言教程,其中大多数的课程都是适用于Python的。
在普及R语言上,我们还是两条腿走路:一条腿是包的构建,另一条腿是教程。一方面,我们通过构建包来为常见问题来开发协作方案,将可视化工作标准化并且避免重复造轮子。另一方面,教程的努力目标在于给所有的数据科学家暴露我们所使用的特定包,并且提供深入学习各自想要学习的技能的机会。
在小的数据科学团队中,独立贡献者经常写一个函数、脚本或者模板来优化他们的工作流。而随着团队成长,不同的人会开发他们自己的工具来解决类似的问题。这就带来了三个主要的挑战:
通过GitHub企业版共享R包可以解决这三个挑战,这使对我们的需求是一个完美的解决方案。具体来说:
这个包放在我们内部的Github企业版仓库,相应的,用户可以提交问题和改进建议。如果在一个分支上有新代码被提交,那么这些代码可以被Rbnb组内的开发者互相审查。一旦这个改变被大家认可并形成文档,他们就会将新代码融入到主分支,形成一个新版本的包。团队成员可以用devtools直接从Github安装最新版本的Rbnb。我们现在致力于添加风格和语法审查,并且用testthat测试覆盖率。
Rbnb主要有四个组件:
大多数我们在 Rbnb 中使用的函数允许我们从Hadoop或者SQL环境将数据移动、聚合或筛选到R里面,然后用来做可视化、自然地完成基于内存的分析工作。在Rbnb之前,从Presto获取数据到R里面来运行一个模型需要许多步骤。 数据科学家们需要对集群的准入做认真、打开SSH隧道、为Presto输入主机、端口、模型、目录数据来下载一个 csv 文件加载到R里面,这一切只是为了跑一下我们想要的模型。现在,所有的这些工作可以通过两个函数完成管道化操作。随着 Rbnb 将这些过程隐藏在苍穹之下,我们搞了一个像RPresto一样维护良好的包。类似地,从R获取数据然后移动到AWS的S3也是一行代码搞定。数据科学家不再需要从R保存csv文件,通过我们的API秘钥直接完成AWS的多用户认证配置,并且支持直接通过shell脚本将csv文件移动到云端。更加重要的是,所有函数都遵循一个类似的标准(比如,place_action(orgin,destination))。
如果我们的数据基础设施有所变化,-比如,如果一个集群移动或者AWS S3 认证的细节变动 – 我们可以修改我们的Rbnb包的内部,而不用修改我们之前定义好的函数接口。
这里展示了Rbnb中的一些函数。所有函数遵循一个类似的规范,通过综合的代码审查和对我们工作流的抽象减少了我们很多平常的工作。
这个包通过一致的数据可视化风格也帮助我们的工作在Airbnb内部品牌化 – 比如这些又 Bar Ifrach 和 Lisa Qian 提交的示例。我们也已经为 ggplot2、htmlwidgets、Shiny、不同报告的Rmarkdown模板的CSS样式 构建了自定义主题、缩放规则和设计对象。这些特性重构了 R 字体和颜色默认的设置,使得整体上和Airbnb的品牌保持一致。
这个 Rbnb 包也有许多函数帮助我们来完成自动化任务,比如缺失值处理、按年趋势计算、提升数据聚合性能、我们用来分析实验的可重用模式等等。添加一个函数到这个包里可能花费很多时间,但是这最初的投资将带来长期的回报。通过使用一样的R包作为我们的构建模板来开发一样的语言、数据可视化风格以及相互评审。
如果人们不知道怎么使用工具的话,你做了多少个工具都没用。在一系列快速增长之后,我么年开始每月为新成员和现有成员做为期一周的数据集训营。他们包括3个小时的 R 培训以及一些用R和R Markdown完成的有可选导师的集训营项目。
这个R集训营班专注于 Rbnb 包和一些常用数据操作包的使用,包括数据框操作(比如tidyr和dplyr)、数据可视化(ggplot2)、以及动态报告撰写(R Markdown)。我们在课程开始前会为参与者发放学习指南和资料。在上课期间,我们使用自己的数据贯穿一个结构化的教程,包括我们以工作实例的形式展现一些我们在工作中遇到的挑战。
这个方法允许用户在刚开始的几个小时里不需要熟悉R的代码就可以开始写代码了,并且完全不必担心高级编程方法的复杂性。我们也介绍用户使用我们内部风格指南和其他许多有用的R包,比如 formattable、diagrammeR以及broom。最后,我们给他们寻求帮助和网络资源的一些方向。
在集训营之后,我们鼓励用户持续学习。我们赞助每个人参加 DataCamp 来帮助团队成员根据自己的学习进度组织学习小组完成可交互性的在线课程。我们也让新人和导师结对,这些导师帮新人带上数据科学家的台阶。我们有一个内部R语言问答的Slack频道。我们团队成员组织学习的课程主题有 SparkR、R 对象系统、包的开发等等。最近,我们团队成员参加一个由RStudio组织的高级的R开发者沙龙,并且分享了我们从团队成长中的点点滴滴。
我们的数据科学团队的成员也鼓励Rbnb贡献代码。通过一个全面的代码评审的过程允许用户开发新技能将为将来的项目带来有价值。此外,他们对一个重要的内部工具有了主人翁精神并且从同行那里知道如何从各自的贡献中受益。我们在最佳实践、功能文档,测试,和风格方面都会指导新的贡献者。
我们也致力于在Airbnb之外扩展R语言社区。我们赞助像即将开始的 rOpenSci Unconf 大会,为开源项目贡献代码(比如ggtech、ggradar),以及在 Shiny 开发者大会 和 UseR 大会做一些分享。去年,我们很荣幸影响到了许多R 开发者,包括 Hadley Wickham 和 Ramnath Vaidyanathan 他们也拜访了我们在三藩市的总部。
在结构化学习资源中这个工具变得越来越有影响力。
在工具和教程之外,我们也发明一些强大的数据基础设施。在过去的3年间,我们的 Shiny 应用从我们的服务器开始运行的第一天就已经有将近10万个页面浏览量。我们最近开始支持一个新的 RStudio Server 和 SparkR 集群。我们有一个独立主厨的R包配方以及横跨我们集群上的版本控制,这允许我们产出快速的更新并且大规模部署。
强大的 R 语言工具、持续学习、与R社区的紧密结合、强大的数据基础设施,这些都帮助我么你的数据科学团队不断成长。自从两年以前我们开始这个动议,我们看过的团队成员有从未打开R到转变成强大的开发人员现在都开始给我们的新员工教R。这个我们已经建立的基础允许我们雇佣一个大范围的数据科学家来分享成长心态和学习新技能的兴奋。这个方法帮助我们建立一个能为我们的工作带来新的见解和观点的多元化团队。
Rbnb R包的创建也激发了Python开发人员发布数据科学家的内部称为Airpy的Python包。我们的R开发人员也在合作开发这个包,所以这个包有一个类似的接口和函数集。我们鼓励团队成员同时为Rbnb何Airpy来贡献代码,我们也在一起工作来开发更多有效的教育资源和工具来加持我们的团队。今天,许多我们团队的成员同时精通Python和R,同时用这两张语言都可以评审和写出可靠的代码。在最近的一个为数66人的团队成员调查中,我们发现80%的数据科学家和分析师在R的数据分析的自我评价都是偏向于”专家”而不是”初学者”,即使其中只有64%的人将R作为他们首选的数据分析语言。类似地,47%的团队成员认为自己用Python做数据分析已经进入专家的行列,即使只有31%的人将Python作为首选分析工具。这保留了5%表明他们同时均衡地使用这两种工具。我们专注于建立一个同时精通两种语言的平衡团队,在我们招聘的过程中也不会带有任何偏好或偏见。这是个让我们技能、经历、背景多样化的方法又进一步提升了团队的影响力。
数据分析咨询请扫描二维码
数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10