数据分析的7个关键步骤
“数据科学家” 术语总让人联想到一个孤独的天才独自工作,将深奥的公式应用于大量的数据,从而探索出有用的见解。但这仅仅是数据分析过程中的一步。数据分析本身不是目标,目标是使企业能够做出更好的决策。数据科学家构建出的产品,必须使得组织中的每个人更好地使用数据,使得每个部门、每个层级可以做出受数据驱动的决策。
在自动收集、清洗和分析数据的产品中,可以捕获数据价值链,为执行仪表盘或报告提供信息和预测。随着新数据的产生,分析工作可以自动地、连续地运行。数据科学家可以根据业务不断改进模型,提高预测精度。
虽然每个公司都是针对自己的需求和目标创建数据产品,但价值链中的一些步骤是一致的:
1. 决定目标
在获取数据之前,数据价值链的第一步要先决定目标:业务部门要决定数据科学团队的目标。这些目标通常需要进行大量的数据收集和分析。因为我们正在研究那些驱动决策的数据,所以需要一个可衡量的方式,判断业务是否正向着目标前进。数据分析过程中,关键权值或性能指标必须及早发现。
2. 确定业务手段
应该通过业务的改变,来提高关键指标和达到业务目标。如果没有什么可以改变的,无论收集和分析多少数据都不可能有进步。在项目中尽早确定目标、指标和业务手段能为项目指明方向,避免无意义的数据分析。例如,目标是提高客户滞留度,其中一个指标可以是客户更新他们订阅的百分比,业务手段可以是更新页面的设计,提醒邮件的时间和内容以及特别的促销活动。
3. 数据收集
数据收集要尽量广撒网。更多的数据—-特别是更多的不同来源的数据—-使得数据科学家能找到数据之间更好的相关性,建立更好的模型,找到更多的可行性见解。大数据经济意味着个人记录往往是无用的,拥有可供分析的每一条记录才能提供真正的价值。公司通过检测它们的网站来密切跟踪用户的点击及鼠标移动,商店通过在产品上附加RFID来跟踪用户的移动,教练通过在运动员身上附加传感器来跟踪他们的行动方式。
4. 数据清洗
数据分析的第一步是提高数据质量。数据科学家要纠正拼写错误,处理缺失数据以及清除无意义的信息。这是数据价值链中最关键的步骤。垃圾数据,即使是通过最好的分析,也将产生错误的结果,并误导业务本身。不止一个公司很惊讶地发现,他们很大一部分客户住在纽约的斯克内克塔迪,而该小镇的人口不到70000人。然而,斯克内克塔迪的邮政编码是12345,由于客户往往不愿将他们的真实信息填入在线表单,所以这个邮政编码会不成比例地出现在几乎每一个客户的档案数据库中。直接分析这些数据将导致错误的结论,除非数据分析师采取措施来验证和清洗数据。尤为重要的是,这一步将规模化执行,因为连续数据价值链要求传入的数据会立即被清洗,且清洗频率非常高。这通常意味着此过程将自动执行,但这并不意味着人无法参与其中。
5. 数据建模
数据科学家构建模型,关联数据与业务成果,提出关于在第一步中确定的业务手段变化的建议。数据科学家独一无二的专业知识是业务成功的关键所在,就体现在这一步—-关联数据,建立模型,预测业务成果。数据科学家必须有良好的统计学和机器学习背景,才能构建出科学、精确的模型,避免毫无意义的相关性及一些模型的陷阱。这些模型依赖于现有的数据,但对于未来的预测是无用的。但只有统计学背景是不够的,数据科学家还需要很好地了解业务,这样他们才能判断数学模型的结果是否有意义,以及是否具有相关性。
6. 培养一个数据科学团队
数据科学家是出了名的难雇用,所以最好自己构建一个数据科学团队,让团队中那些在统计学方面有高级学位的人专注于数据建模和预测,而其他人—-合格的基础架构工程师,软件开发人员和ETL专家—-构建必要的数据收集基础设施,数据管道和数据产品,使得结果数据能够从模型中输出,并以报告和表格的形式在业务中进行展示。这些团队通常使用类似Hadoop的大规模数据分析平台自动化数据收集和分析工作,并作为一个产品运行整个过程。
7. 优化和重复
数据价值链是一个可重复的过程,能够对业务和数据价值链本身产生连续的改进。基于模型的结果,业务将根据驱动手段做出改变,数据科学团队将评估结果。在结果的基础上,企业可以决定下一步计划,而数据科学团队继续进行数据收集、数据清理和数据建模。企业重复这个过程越快,就会越早修正发展方向,越快得到数据价值。理想情况下,多次迭代后,模型将产生准确的预测,业务将达到预定的目标,结果数据价值链将用于监测和报告,同时团队中的每个人将开始解决下一个业务挑战。
数据分析咨询请扫描二维码
在当今数字化时代,数据已成为推动经济和技术发展的关键因素。企业和机构对数据科学与大数据专业人才的需求急剧增长。该领域涵盖 ...
2024-11-16金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13