
1. 理论知识
决策树分类算法的一般流程如下:一开始,所有的实例均位于根节点,所有参数的取值均离散化;根据启发规则选择一个参数,根据参数取值的不同对实例集进行分割;对分割后得到的节点进行同样的启发式参数选择分割过程,如此往复,直到(a)分割得到的实例集合属于同一类;(b)参数用完,以子集中绝大多数的实例类别作为该叶节点的类别。
基于熵的概念,我们可以得到参数选择的第一个规则:信息增益(Info Gain).信息增益的定义是分裂前的节点熵减去分裂后子节点熵的加权和,即不纯度的减少量,也就是纯度的增加量。参数选择的规则是:选择使信息增益最大的参数分割该节点。信息增益计算的算例如下图。
信息增益存在的问题时:总是倾向于选择包含多取值的参数,因为参数的取值越多,其分割后的子节点纯度可能越高。为了避免这个问题,我们引入了增益比例(Gain Ratio)的选择指标,其定义如下图所示。
增益比例存在的问题是:倾向于选择分割不均匀的分裂方法,举例而言,即一个拆分若分为两个节点,一个节点特别多的实例,一个节点特别少的实例,那么这种拆分有利于被选择。
为了克服信息增益和增益比例各自的问题,标准的解决方案如下:首先利用信息增益概念,计算每一个参数分割的信息增益,获得平均信息增益;选出信息增益大于平均值的所有参数集合,对该集合计算增益比例,选择其中增益比例最大的参数进行决策树分裂。
上面介绍的是基于熵概念的参数选择规则,另一种流行的规则称为基尼指数(Gini Index),其定义如下图。基尼系数在节点类别分布均匀时取最大值1-1/n,在只包含一个类别时取最小值0. 所以与熵类似,也是一个描述不纯度的指标。
基于基尼系数的规则是:选择不纯度减少量(Reduction in impurity)最大的参数。不纯度减少量是分割前的Gini index减去分割后的Gini index。基尼系数的特点与信息增益的特点类似。
过度拟合问题(Overfitting)
过度拟合问题是对训练数据完全拟合的决策树对新数据的预测能力较低。为了解决这个问题,有两种解决方法。第一种方法是前剪枝(prepruning),即事先设定一个分裂阈值,若分裂得到的信息增益不大于这个阈值,则停止分裂。第二种方法是后剪枝(postpruning),首先生成与训练集完全拟合的决策树,然后自下而上地逐层剪枝,如果一个节点的子节点被删除后,决策树的准确度没有降低,那么就将该节点设置为叶节点(基于的原则是Occam剪刀:具有相似效果的两个模型选择较简单的那个)。
Scalable决策树分类算法
这里介绍两个算法,一个是RainForest,其主要的贡献是引入了一个称为AVC的数据结构,其示意图如下。主要的作用是加速参数选择过程的计算。
另一个算法称为BOAT,其采用了称为bootstrap的统计技术对数据集进行分割,在分割的子数据集上分别构造决策树,再基于这些决策树构造一个新的决策树,文章证明这棵新树与基于全局数据集构造的决策树非常相近。这种方法的主要优势在于支持增量更新。
rpart(formula, data, weight s, subset, na. action = na. rpart, method, model= FALSE, x= FALSE,y= TRUE, parms, control, cost, . . . )
fomula 回归方程形式: 例如 y~ x 1+ x2+ x3。
data 数据: 包含前面方程中变量的数据框( data frame) 。
na.action 缺失数据的处理办法: 默认办法是删除因变量缺失的观测而保留自变量缺失的观测。
method 根据树末端的数据类型选择相应变量分割方法,本参数有四种取值: 连续型>anova; 离散型>class; 计数型( 泊松过程)>poisson; 生存分析型>exp。程序会根据因变量的类型自动选择方法, 但一般情况下最好还是指明本参数, 以便让程序清楚做哪一种树模型。
parms 用来设置三个参数:先验概率、损失矩阵、分类纯度的度量方法。anova没有参数;poisson分割有一个参数,先验分布变异系数的比率,默认为1;生存分布的参数和poisson一致;对离散型,可以设置先验分布的分布的概率(prior),损失矩阵(loss),分类纯度(split);priors必须为正值且和为1,loss必须对角为0且非对角为正数,split可以是gini(基尼系数)或者information(信息增益);
control 控制每个节点上的最小样本量、交叉验证的次数、复杂性参量: 即cp: complexity pamemeter, 这个参数意味着对每一步拆分, 模型的拟合优度必须提高的程度, 等等。
prune(tree, cp, . . . )
tree 一个回归树对象, 常是rpart()的结果对象。
cp 复杂性参量, 指定剪枝采用的阈值。
rpart包自带数据集stagec,包含了146位患了stage c前列腺(prostate)癌的病人。变量介绍如下:
pgtime: 出现症状或复发时间,单位年;
pgstat:状态变量,1为复发,0为删减;
age:年龄;
eet:是否内分泌治疗,1为no,2为yes;
g2:g2阶段肿瘤细胞百分比;
grade:肿瘤等级,farrow体系;
gleason:肿瘤等级,gleason体系;
ploidy:肿瘤的倍体状态。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11