说说什么是探索式数据分析、验证性数据分析
在大数据时代,混乱的、无结构的、多媒体的海量数据,通过各种渠道源源不断地积累和记载着人类活动的各种痕迹。探索性数据分析可以成为了一个有效的工具。
美国约翰•怀尔德杜克(John Wilder Tukey)1977年在《探索性数据分析》(Exploratory Data Analysis)一书中第一次系统地论述了探索性数据分析。他的主要观点是:探索性数据分析(EDA)与验证性数据分析(Confirmatory Data Analysis )有所不同:前者注重于对数据进行概括性的描述,不受数据模型和科研假设的限制,而后者只注重对数据模型和研究假设的验证。他认为统计分析不应该只重视模型和假设的验证,而应该充分发挥探索性数据分析的长处,在描述中发现新的理论假设和数据模型。
探索性数据分析有别于初始性数据分析(initial data analysis – IDA)。初始性数据分析的聚焦点是分析鉴别统计模型和科研假设测试所需的条件是否达到,以保证验证性分析的可靠性。在这个分析过程中对不符合条件的数据进行缺值填补、数据转换、异常值舍弃等处理以增强分析的准确性。探索性数据分析包含初始性数据分析,但它的出发点不仅是确定数据质量,而且更重视从数据中发现数据分布的模式(Patten)和提出新的假设。
在以抽样统计为主导的传统统计学中,探索性数据分析对验证性数据分析有着支持和辅助的作用。但由于抽样和问卷都是事先设计好的,对数据的探索性分析是有限的。到了大数据时代,海量的无结构、半结构数据从多种渠道源源不断地积累,不受分析模型和研究假设的限制,如何从中找出规律并产生分析模型和研究假设成为新挑战。
探索性数据分析在对数据进行概括性描述,发现变量之间的相关性以及引导出新的假设方面均大显身手。从逻辑推理上讲,探索性数据分析属于归纳法(Induction)有别于从理论出发的演绎法(Deduction)。因此,探索性数据分析成为大数据分析中不可缺少的一步并且走向前台。高速处理海量数据的新技术加上数据可视化工具的日益成熟更推动了探索性数据分析的快速普及。
美国2014年出版的《数据科学实战》(Rachel Schutt, Cathy O’Neil著,冯凌秉、王群峰译)一书中,探索性数据分析被列为数据科学工作流程中的一个能影响多个环节的关键步骤。(见下图)
可以通过建立垃圾电子邮件过滤器的过程考察一下探索性数据分析的作用。
由于电子邮件是自动积累的,各种商业广告常常充斥邮箱,每天都给用户带来很多不便。我们凭直觉和经验可以判断哪个是垃圾邮件,但人工清理这些垃圾很浪费时间。建立垃圾邮件过滤器的第一步是从大量邮件中随机抽样出100条(或更多),人工地将它们分成有用邮件和垃圾邮件。第二步是用探索性数据分析对筛选出的垃圾邮件进行分析统计出哪类词汇出现的机率最高。比如各类促销和诱惑语言等,根据该类语言出现的频度,可选出最常出现的5 到10个词。第四步,以选出的词为基础建立初始邮件过滤模型并开发邮件过滤软件程序,然后用它对一个大样本(1000或更大)进行垃圾邮件的过滤试验。第五步,对过滤器筛选出的垃圾邮件进行人工验证,用探索性数据分析计算过滤的总成功率和每个词的出现率。第六步,用成功率和出现率的结果进一步改进过滤模型,并在邮件处理过程中增加过滤器,根据事先定好的临界点(Threshold),增加或减少过滤词汇的功能(机器学习)。这样,该垃圾邮件过滤器将不断地自我改进以提高过滤的成功率。最后,应用数据可视化技术,各个阶段的探索性数据分析结果都可以实时地用动态图表展示。
从这个过程中我们可以看到:
1. 探索性数据分析能帮助我们从看似混乱无章的原始数据中筛选出可用的数据。
2. 探索性数据分析在数据清理中发挥重要作用。
3. 探索性数据分析是建立算法和过滤模型的第一步。
4. 探索性数据分析能通过数据碰撞发现新假设,通过机器学习不断的改进和提高算法的精准度。
5. 探索性数据分析的结果,通过数据可视化展示,可以为邮件过滤器的开发随时提供指导和修正信息。
按照传统统计的“垃圾进,垃圾出”(Garbage in, garbage out)的金科玉律,混乱和不规则的数据是无用的垃圾。在抽样统计中,每一个样品数据都必须经过严格的检测确保其准确性和可靠性。在大数据时代,混乱的、无结构的、多媒体的海量数据通过各种渠道(Internet of Things, IoT)源源不断地积累和记载着人类活动的各种痕迹。探索性数据分析这个统计课程里一带而过的分析方法在处理大数据的过程中却成为了一个有效的工具。正如美国探索性数据分析创始人约翰•怀尔德杜克所说:“面对那些我们坚信存在或不存在的事物时,‘探索性数据分析’代表了一种态度,一种方法手段的灵活性,更代表了人们寻求真相的强烈愿望。”
数据分析咨询请扫描二维码
数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10