数据分析之_散点图_数据分析师
一:什么是散点图 - What is a scatter plot
任何数据分析的第一步是图形化曲线显示数据,根据相互关系,图形曲线被称为散点图。散点图可以表示两个变量之间真实的关系强度,关系的趋势,是否存在Outliers
二:散点图的目的是什么
ü 观察变量之间的关系,发现统计数据中是否存在问题,或者特殊值和感兴趣的数据
ü 数据是如何被离散化的
ü 通过眼睛观察是否存在Outliers
三:示例说明
一个人的肺活量和屏住呼吸时间的研究,一个人能屏住呼吸多久,一个研究者选择一组人作为研究对象,测量每个人的肺活量作为第一个变量,屏住呼吸时间作为第二个变量,研究者将使用散点图来描述数据,假设肺活量作为水平轴,屏住呼吸时间做为垂直轴。
四:代码实现
基于Java开源的数据图形显示组件-JFreeChart已经实现了离散图,只要我们提供数据即可
基于上面描述的演示如下:
五:相关性系数 correlation coefficient – R/r
Relationship Between X and Y Axis |
||
r = + 1.0 |
Strong - Positive |
As X goes up, Y always also goes up |
r = + 0.5 |
Weak - Positive |
As X goes up, Y tends to usually also go up |
r = 0 |
- No Correlation - |
X and Y are not correlated |
r = - 0.5 |
Weak - Negative |
As X goes up, Y tends to usually go down |
r = - 1.0 |
Strong - Negative |
As X goes up, Y always goes down |
本例中的r值为0.9814324978439516,显然肺活量跟屏住呼吸时间长短有很强的正相关性。
以下为源代码:
package com.dataanalysis.plots; import java.awt.Color; import javax.swing.JPanel; import org.apache.commons.math.stat.descriptive.DescriptiveStatistics; import org.jfree.chart.ChartFactory; import org.jfree.chart.ChartPanel; import org.jfree.chart.JFreeChart; import org.jfree.chart.annotations.XYTextAnnotation; import org.jfree.chart.axis.NumberAxis; import org.jfree.chart.plot.PlotOrientation; import org.jfree.chart.plot.XYPlot; import org.jfree.chart.renderer.xy.XYLineAndShapeRenderer; import org.jfree.data.xy.DefaultXYDataset; import org.jfree.data.xy.XYDataset; import org.jfree.ui.ApplicationFrame; import org.jfree.ui.RefineryUtilities; // - http://en.wikipedia.org/wiki/Scatter_plot public class ScatterPlotDemo extends ApplicationFrame { /** * */ private static final long serialVersionUID = 1L; private static double[][] data; /** * A demonstration application showing a scatter plot. * * @param title the frame title. */ public ScatterPlotDemo(String title) { super(title); JPanel chartPanel = createDemoPanel(); chartPanel.setPreferredSize(new java.awt.Dimension(600, 400)); setContentPane(chartPanel); } private static JFreeChart createChart(XYDataset dataset) { JFreeChart chart = ChartFactory.createScatterPlot("Scatter Plot Demo", "lung capacity(ml)", "time holding breath(s)", dataset, PlotOrientation.VERTICAL, true, false, false); XYPlot plot = (XYPlot) chart.getPlot(); plot.setNoDataMessage("NO DATA"); plot.setDomainZeroBaselineVisible(true); plot.setRangeZeroBaselineVisible(true); XYLineAndShapeRenderer renderer = (XYLineAndShapeRenderer) plot.getRenderer(); renderer.setSeriesOutlinePaint(0, Color.black); renderer.setUseOutlinePaint(true); // x axis NumberAxis domainAxis = (NumberAxis) plot.getDomainAxis(); domainAxis.setAutoRange(true); // Y axis NumberAxis rangeAxis = (NumberAxis) plot.getRangeAxis(); rangeAxis.setAutoRange(true); XYTextAnnotation textAnnotation = new XYTextAnnotation("R = " + calculateCoefficient(data), 370, 25); // r value textAnnotation.setPaint(Color.BLUE); textAnnotation.setToolTipText("Correlation Coefficient"); plot.addAnnotation(textAnnotation); return chart; } /** * Creates a panel for the demo (used by SuperDemo.java). * * @return A panel. */ public static JPanel createDemoPanel() { JFreeChart chart = createChart(createXYDataset()); ChartPanel chartPanel = new ChartPanel(chart); chartPanel.setPopupMenu(null); chartPanel.setDomainZoomable(true); chartPanel.setRangeZoomable(true); return chartPanel; } public static XYDataset createXYDataset() { DefaultXYDataset xyDataset = new DefaultXYDataset(); data = new double[2][12]; // x axis data - lung capacity(ml) data[0] = new double[]{400,397,360,402,413,427,389,388,405,422,411,433}; // y axis data - time holding breath(s) data[1] = new double[]{21.7,20.7,17.7,21.9,23.7,25.7,20.4,20.1,22.9,24.8,22.5,25.9}; xyDataset.addSeries("Research Data", data); System.out.println("Correlation Coefficient = " + calculateCoefficient(data)); return xyDataset; } public static double calculateCoefficient(double[][] data) { DescriptiveStatistics xDataSet = new DescriptiveStatistics(); for(int i=0; i<data[0].length; i="" xdataset="" descriptivestatistics="" ydataset="new" descriptivestatistics="" for="" i="0;" i="" i="" ydataset="" double="" n="yDataSet.getValues().length;" double="" xysum="0.0d;" double="" xpowsum="0.0d;" double="" ypowsum="0.0d;" for="" i="0;" i="" i="" xysum="" xdataset="" ydataset="" xpowsum="" math="" ypowsum="" double="" s1="xySum" -="" ydataset="" double="" xs="xPowSum" -="" double="" ys="yPowSum" -="" double="" s2="Math.sqrt(xS" ys="" return="" s2="" starting="" point="" for="" the="" demonstration="" application="" args="" ignored="" public="" static="" void="" main="" args="" scatterplotdemo="" demo="new" scatterplotdemo="" plot="" demo="" demo="" refineryutilities="" demo=""> </data[0].length;>
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10推荐学习书籍 《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门! ...
2025-03-07在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本 ...
2025-03-06