数据分析之_离群值(Outliers) BoxPlot_数据分析师
一:什么是Outliers
Outliers是统计学专业术语,是指相比一组数据中的其它数据的极限值
二:极限值意味什么
1. 决定哪些值是Outliers是一个主观行为,有一些基准数据来决定是否一个值是一个Outliers,这些基准是任意选择的,比如P<=0.5就是一个任意选择的基准
2. 一个基准是用BoxPlot来决定适度离群值(mild Outliers)和极限离群值(extreme Outliers),适度离群值是任何值1.5倍大于基于剩下所有的值的IQR,极限离群值是任何值3倍大于剩下所有的值的IQR,IQR(Interquartile Range)代表四分位数间距,是这些值中的50%中间值,分别是Q1-25%, Median-50%,Q3-75%, IQR=Q3-Q1
三:使用Box Plot来发现Outliers
一个典型的Box Plot是基于以下五个值计算而来的
a. 一组样本的最小值
b. 一组样本的最大值
c. 一组样本的中值
d. 下四分位数(Lower Quartile / Q1)
e. 上四分位数(Upper Quartile / Q3)
根据这五个值构建出来基本的Box Plot,某些图形软件还会显示平均值,IQR= Q3 – Q1
显然超出上下四分位数的值可以看做为Outliers。我们通过眼睛就可以很好的观察到这些Outliers值的点。
一个显示适度和极限Outliers值的Box plot显示如下:
四:示例说明及JfreeChart的实现
假设一组数据为:2,4,6,8,12,14,16,18,20,25,45
中值 Median = 14
Q1-下四分位数(11 * 0.25 = 3) = 7
Q3-上四分位数(11 * 0.75 = 9) =19
IQR(Q3 – Q1) = 12
1.5 * IQR = 18
最小值(6 – 1.5 * IQR)= 2
最大值(20 + 1.5 * IQR)= 25
很显然值45是一个适度Outliers
对比的一组数据为:2,4,6,8,12,14,16,18,20,25,26
从图上可以看出Series0的数据存在Outliers,一个红色三角形已经表明
同样Series1的数据是一组非常好的数据,没有Outliers.
下面是Java源代码:
package com.dataanalysis.plots; import java.awt.Font; import java.util.ArrayList; import java.util.List; import org.jfree.chart.ChartPanel; import org.jfree.chart.JFreeChart; import org.jfree.chart.axis.CategoryAxis; import org.jfree.chart.axis.NumberAxis; import org.jfree.chart.labels.BoxAndWhiskerToolTipGenerator; import org.jfree.chart.plot.CategoryPlot; import org.jfree.chart.renderer.category.BoxAndWhiskerRenderer; import org.jfree.data.statistics.BoxAndWhiskerCategoryDataset; import org.jfree.data.statistics.DefaultBoxAndWhiskerCategoryDataset; import org.jfree.ui.ApplicationFrame; import org.jfree.ui.RefineryUtilities; public class BoxAndWhiskerDemo extends ApplicationFrame { /** * */ private static final long serialVersionUID = -3205574763811416266L; /** * Creates a new demo. * * @param title the frame title. */ public BoxAndWhiskerDemo(final String title) { super(title); final BoxAndWhiskerCategoryDataset dataset = createSampleDataset(); final CategoryAxis xAxis = new CategoryAxis("Type"); final NumberAxis yAxis = new NumberAxis("Value"); yAxis.setAutoRangeIncludesZero(false); final BoxAndWhiskerRenderer renderer = new BoxAndWhiskerRenderer(); renderer.setFillBox(false); renderer.setToolTipGenerator(new BoxAndWhiskerToolTipGenerator()); final CategoryPlot plot = new CategoryPlot(dataset, xAxis, yAxis, renderer); final JFreeChart chart = new JFreeChart( "Box-and-Whisker Demo", new Font("SansSerif", Font.BOLD, 14), plot, true ); final ChartPanel chartPanel = new ChartPanel(chart); chartPanel.setPreferredSize(new java.awt.Dimension(450, 270)); setContentPane(chartPanel); } /** * Creates a sample dataset. * * @return A sample dataset. */ private BoxAndWhiskerCategoryDataset createSampleDataset() { final int seriesCount = 2; final int categoryCount = 4; double[] data = null; final DefaultBoxAndWhiskerCategoryDataset dataset = new DefaultBoxAndWhiskerCategoryDataset(); for (int i = 0; i < seriesCount; i++) { if(i == 0) { data = new double[]{2,4,6,8,12,14,16,18,20,25,45}; } else { data = new double[]{2,4,6,8,12,14,16,18,20,25,26}; } for (int j = 0; j < categoryCount; j++) { final List list = new ArrayList(); for (int k = 0; k < data.length; k++) { list.add(new Double(data[k])); } dataset.add(list, "Series " + i, " Type " + j); } } return dataset; } /** * For testing from the command line. * * @param args ignored. */ public static void main(final String[] args) { final BoxAndWhiskerDemo demo = new BoxAndWhiskerDemo("Box-and-Whisker Chart Demo"); demo.pack(); RefineryUtilities.centerFrameOnScreen(demo); demo.setVisible(true); } }数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20