【gloomyfish】Box zoom on Category Plot in JFreeChart
Background:
currently JFreechart did not support domain axis zoom with category plot, the domain and value axis is zoomable only for XYPlot, however when category dataset contains huge categories while user could not select some categories to view by box zoom. the category plot is becoming un-usable one for user. obviously user would like to see box zoom with category plot.
Summary:
from box zoom on XYPlot in JFreechart, i read all relevant source code about zooming in JFreeChart and i found that there is a way to support box zoom on category plot by following steps:
a. support drawing the zoom rectangle in category data area (plot)
b. identify the domain axis and each category start point on domain axis.
c. measure the each category start point with zoom box
d. remove any categories if the start coordinate value is out of zoom rectangle.
Basic Design:
in order to support box zoom on category plot, we need to overwrite following methods which has been implemented in ChartPanel by JFreeChart:
1. mousePressed() - record the start zoom point
2. mouseDragged() - draw zoom box rectangle on category plot
3. mouseReleased() - zoom in the categories which is selected in rectangle.
4. paintComponent() - supporting to draw zoom rectangle
Run Result:
mouse selected rectangle - box zoom
zooming the rectangle
Code Implementation:
package test.it; import java.awt.Color; import java.awt.Font; import java.awt.Graphics; import java.awt.Graphics2D; import java.awt.Paint; import java.awt.event.MouseEvent; import java.awt.geom.Point2D; import java.awt.geom.Rectangle2D; import javax.swing.JPanel; import javax.swing.JPopupMenu; import org.jfree.chart.ChartPanel; import org.jfree.chart.ChartRenderingInfo; import org.jfree.chart.JFreeChart; import org.jfree.chart.axis.CategoryAxis; import org.jfree.chart.axis.NumberAxis; import org.jfree.chart.plot.CategoryPlot; import org.jfree.chart.plot.PlotOrientation; import org.jfree.chart.plot.Zoomable; import org.jfree.chart.renderer.category.BarRenderer; import org.jfree.data.category.CategoryDataset; import org.jfree.data.category.DefaultCategoryDataset; import org.jfree.experimental.chart.plot.CombinedCategoryPlot; import org.jfree.ui.ApplicationFrame; import org.jfree.ui.RefineryUtilities; /** * A demo for the {@link CombinedCategoryPlot} class. */ public class CombinedCategoryPlotDemo1 extends ApplicationFrame { /** * */ private static final long serialVersionUID = 8114720685282689420L; /** * Creates a new demo instance. * * @param title the frame title. */ public CombinedCategoryPlotDemo1(String title) { super(title); JPanel chartPanel = createDemoPanel(); chartPanel.setPreferredSize(new java.awt.Dimension(500, 270)); setContentPane(chartPanel); } /** * Creates a dataset. * * @return A dataset. */ public static CategoryDataset createDataset2() { DefaultCategoryDataset result = new DefaultCategoryDataset(); String series1 = "Third"; String series2 = "Fourth"; String type1 = "Type 1"; String type2 = "Type 2"; String type3 = "Type 3"; String type4 = "Type 4"; String type5 = "Type 5"; String type6 = "Type 6"; String type7 = "Type 7"; String type8 = "Type 8"; result.addValue(11.0, series1, type1); result.addValue(14.0, series1, type2); result.addValue(13.0, series1, type3); result.addValue(15.0, series1, type4); result.addValue(15.0, series1, type5); result.addValue(17.0, series1, type6); result.addValue(17.0, series1, type7); result.addValue(18.0, series1, type8); result.addValue(15.0, series2, type1); result.addValue(17.0, series2, type2); result.addValue(16.0, series2, type3); result.addValue(18.0, series2, type4); result.addValue(14.0, series2, type5); result.addValue(14.0, series2, type6); result.addValue(12.0, series2, type7); result.addValue(11.0, series2, type8); return result; } /** * Creates a chart. * * @return A chart. */ private static JFreeChart createChart() { CategoryDataset dataset2 = createDataset2(); NumberAxis rangeAxis2 = new NumberAxis("Value"); rangeAxis2.setStandardTickUnits(NumberAxis.createIntegerTickUnits()); CategoryAxis domainAxis = new CategoryAxis("Category"); CategoryPlot plot = new CategoryPlot(dataset2, domainAxis, new NumberAxis("Range"), new BarRenderer()); JFreeChart result = new JFreeChart( "Combined Domain Category Plot Demo", new Font("SansSerif", Font.BOLD, 12), plot, true); return result; } /** * Creates a panel for the demo (used by SuperDemo.java). * * @return A panel. */ public static JPanel createDemoPanel() { JFreeChart chart = createChart(); return new ChartPanel(chart){ /** * */ private static final long serialVersionUID = -4857405671081534981L; private Point2D zoomPoint = null; private Rectangle2D zoomRectangle = null; private boolean fillZoomRectangle = true; private JPopupMenu popup; private Paint zoomOutlinePaint = Color.blue; private Paint zoomFillPaint = new Color(0, 0, 255, 63); public void mousePressed(MouseEvent e) { if (e.isPopupTrigger()) { if(popup == null) { popup = createPopupMenu(true,true,true,true); } if (this.popup != null) { displayPopupMenu(e.getX(), e.getY()); return; } } PlotOrientation orientation = ((Zoomable)this.getChart().getPlot()).getOrientation(); System.out.println("Orientation --->> " + orientation.toString()); if(orientation == PlotOrientation.HORIZONTAL) { return; } if (this.zoomRectangle == null) { Rectangle2D screenDataArea = getScreenDataArea(e.getX(), e.getY()); if (screenDataArea != null) { this.zoomPoint = getPointInRectangle(e.getX(), e.getY(), screenDataArea); } else { this.zoomPoint = null; } } } private Point2D getPointInRectangle(int x, int y, Rectangle2D area) { double xx = Math.max(area.getMinX(), Math.min(x, area.getMaxX())); double yy = Math.max(area.getMinY(), Math.min(y, area.getMaxY())); return new Point2D.Double(xx, yy); } public void mouseReleased(MouseEvent e) { if (e.isPopupTrigger()) { if(popup == null) { popup = createPopupMenu(true,true,true,true); } if (this.popup != null) { displayPopupMenu(e.getX(), e.getY()); zoomRectangle = null; return; } } if(this.getChart().getCategoryPlot().getDataset().getColumnCount() < 2) { repaint(); zoomRectangle = null; return; } if (zoomRectangle == null) { // do nothing } else { // do something here. zoom rectangle with data System.out.println("fucking........"); System.out.println("reset dataset here"); CategoryDataset dataset = this.getChart().getCategoryPlot().getDataset(); System.out.println("category count = " + dataset.getColumnCount()); System.out.println("category type = " + dataset.getRowCount()); Comparable[] rowKeys = new Comparable[dataset.getRowCount()]; rowKeys[0] = dataset.getRowKey(0); rowKeys[1] = dataset.getRowKey(1); Comparable[] columnKeys = new Comparable[dataset.getColumnCount()]; for(int i=0; i<columnKeys.length; i++) { columnKeys[i] = dataset.getColumnKey(i); } double[] endValueAxis = new double[dataset.getColumnCount()]; double[] startValueAxis = new double[dataset.getColumnCount()]; double minX = zoomRectangle.getBounds2D().getMinX(); double maxX = zoomRectangle.getBounds2D().getMaxX(); CategoryPlot plot = this.getChart().getCategoryPlot(); ChartRenderingInfo info = this.getChartRenderingInfo(); Rectangle2D dataArea = info.getPlotInfo().getDataArea(); CategoryAxis categoryaxis=this.getChart().getCategoryPlot().getDomainAxis(); for(int i=0; i<dataset.getColumnCount(); i++) { endValueAxis[i] = categoryaxis.getCategoryEnd(i, dataset.getColumnCount(), dataArea, plot.getDomainAxisEdge()); startValueAxis[i] = categoryaxis.getCategoryStart(i, dataset.getColumnCount(), dataArea, plot.getDomainAxisEdge()); } for(int i=0; i<endValueAxis.length; i++) { if(minX > startValueAxis[i] || maxX < startValueAxis[i]) { DefaultCategoryDataset defaultDataset = (DefaultCategoryDataset)dataset; defaultDataset.removeValue(rowKeys[0], columnKeys[i]); defaultDataset.removeValue(rowKeys[1], columnKeys[i]); } } } zoomRectangle = null; } public void mouseDragged(MouseEvent e) { // if no initial zoom point was set, ignore dragging... if (this.zoomPoint == null) { return; } Graphics2D g2 = (Graphics2D) getGraphics(); Rectangle2D scaledDataArea = getScreenDataArea((int) this.zoomPoint.getX(), (int) this.zoomPoint.getY()); double ymax = Math.min(e.getY(), scaledDataArea.getMaxY()); double xmax = Math.min(e.getX(), scaledDataArea.getMaxX()); this.zoomRectangle = new Rectangle2D.Double(this.zoomPoint.getX(), this.zoomPoint.getY(), xmax - this.zoomPoint.getX(), ymax - this.zoomPoint.getY()); repaint(); g2.dispose(); } public void paintComponent(Graphics g) { super.paintComponent(g); Graphics2D g2 = (Graphics2D) g.create(); drawZoomRectangle(g2, false); g2.dispose(); } private void drawZoomRectangle(Graphics2D g2, boolean xor) { if (this.zoomRectangle != null) { if (xor) { // Set XOR mode to draw the zoom rectangle g2.setXORMode(Color.gray); } if (this.fillZoomRectangle) { g2.setPaint(this.zoomFillPaint); g2.fill(this.zoomRectangle); } else { g2.setPaint(this.zoomOutlinePaint); g2.draw(this.zoomRectangle); } if (xor) { // Reset to the default 'overwrite' mode g2.setPaintMode(); } } } }; } /** * Starting point for the demonstration application. * * @param args ignored. */ public static void main(String[] args) { String title = "Combined Category Plot Demo 1"; CombinedCategoryPlotDemo1 demo = new CombinedCategoryPlotDemo1(title); demo.pack(); RefineryUtilities.centerFrameOnScreen(demo); demo.setVisible(true); } }
I just adding some codes in the category demo program with JFreeChart, the code implementation need to be improved in future.
Drawback:
could not restore to original dataset since i just removed the categories, one way is to implement this like this:
just take back original dataset when there is only one category in plot.
Discussion:
...
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21