文科生决心做数据分析师是不是疯了?
背景:
传媒类专业毕业,一直做视频剪辑、编辑方面的工作。没什么编码基础,只在大学时期考过VB。偶然得到一份数据分析师的工作,便决心从零做起。
疑惑:
工作近一年,一直在做数据整理方面工作,感觉没什么分析提炼的能力提升。自学了一点SQL查询语句,统计学与概率教程看不懂理论与具体工作有什么关系。想问我这种情况该从哪方面着手自我修炼呢?
回答:
完全有可能。
题主知不知道有个专业叫心理学,这是一个理科专业,但是是文理兼招的。心理学专业要学很多数据分析,很多文科生也学的很好。
首先破除一个误解,数据分析师最主要的能力不是计算机技术,而是数据统计分析能力。其实小公司里面的数据分析师能力要求并不高,周围的数据分析师很少有高级到懂机器学习的。大家说的懂Java什么的我觉得是数据挖掘工程师了。数据分析和数据挖掘需要掌握的技能有什么区别? – 纪路的回答须知数据分析师到数据挖掘工程师之间还差了100个程序员。下面贴出阿里的“数据分析师职位技能树分析,进阿里什么难度大家懂,所以应聘小公司“数据分析师岗位的话技能要求可适当放低。””校园招聘时一位应聘“数据分析师”职位的学生应该具备哪些技能? – 知乎用户的回答
如果你要入坑数据分析师,我建议你从四方面入门: (根据阿里数据分析师试卷)
1.统计学
2.SQL
3.spss
4.R语言
统计学绝对是数据分析师的核心竞争力,是你技能树的骨干,你要知道过去数据分析也是直接靠人工计算的。但是现在数据量级越来越大,靠手算已经不能解决问题了。所以我们需要一些工具来帮助我们处理数据。比如spss就是一个专门为数据分析开发出来的成品软件,已经非常成熟了。你可能听别人说数据分析师要会spss和SAS,其实呢,他们就相当于PPT和Keynote的关系。工具嘛,会一门就行。对于你这种还没入门的,spss比SAS简单,你可以就学spss不学SAS。那SQL是干什么的呢,它是数据库语言,也就是说数据太多了你要建个仓库把它们分门别类的放好,方便查找。R语言呢,是专门用来统计和制图的一门编程语言,也是数据分析的利器。但是呢,其实spss已经有很多功能了,所以R语言并非必要,只能说是个加分项。
所以只要你统计学的好,spss和SQL也会了,基本上就差不多了。
至于学习难度呢,统计学选外国的教程看起来思路就明晰很多。SQL选对了书一点也不难,spss比SAS简单好多,就是一个直接点的软件,R语言跟你想的不一样,它也跟一般的编程语言不同。不需要多少编程基础,非常适合作为文科生的你。
话不多说,直接推荐入门书籍:
1.统计学:国外的统计学书籍你自己找找,看书做练习题。
2.SQL:《head first SQL》强推,超级简单
3.spss……这个都可以,在网上找找课件
4.R语言:可以从code school上R的入门教程学起,书的话《实战R语言》《R for beginners》《R语言核心技术手册》 入门之后再多分析case,多运用。
还有这个答案,很值得参考如何快速成为数据分析师? – 卡牌大师的回答
但是入门之后,往深里学的话还是要弥补一下自己的数学方面的短板,高数、现代、离散数学(计算机数学)和数据结构(计算机数学)等。尤其离散数字。前期你也许感受不到这个的重要性。可是后期你会越来越感受到。比如你学R语言的xx包,那个包有个论文,然后你看论文发现里面讲了有向图,你就会想这个有向图是个什么鬼。然后你学了离散数学就知道了。数据分析师总之是一个数学和计算机交汇处的职业,所以计算机方面比如网页分析等等也需要涉及一些。这些也并没有你想象的难。我们科班出身的也就是一门学了一学期而已。
然后关于如何入门数据分析师和数据分析师的要求,推荐你翻一翻上关于数据分析师的答案。多看看,然后制定自己的学习计划。关于数据分析、挖掘和R语言的公众号和资源。还有一些博客、统计之都等等可以去看看。
最后,要对自己有信心,有一个idea就去实现它。这是完全可能的。多看书,多刷题,刷到一定数量开始尝试解决实际问题。我有个文科同学就做了一个学期习题期末统计得了我们班最高分 99。现在统计很厉害。
但是我觉得你更应该考虑的是你的职业规划,你学数据分析到底是准备现在就靠这个找工作呢还是把它当做未来的跳板?如果在小公司,数据分析师技能要求并不高,你也许学个几个月就可以去了。可是与之对应,工资也并不高。你不一定愿意。如果去大公司呢,技能要求高,那需要一定的时间。
总之,相信自己,文理科本来就是一个人为的划分而已,大家的脑结构并无显著差异。加油
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31