文科生决心做数据分析师是不是疯了?
背景:
传媒类专业毕业,一直做视频剪辑、编辑方面的工作。没什么编码基础,只在大学时期考过VB。偶然得到一份数据分析师的工作,便决心从零做起。
疑惑:
工作近一年,一直在做数据整理方面工作,感觉没什么分析提炼的能力提升。自学了一点SQL查询语句,统计学与概率教程看不懂理论与具体工作有什么关系。想问我这种情况该从哪方面着手自我修炼呢?
回答:
完全有可能。
题主知不知道有个专业叫心理学,这是一个理科专业,但是是文理兼招的。心理学专业要学很多数据分析,很多文科生也学的很好。
首先破除一个误解,数据分析师最主要的能力不是计算机技术,而是数据统计分析能力。其实小公司里面的数据分析师能力要求并不高,周围的数据分析师很少有高级到懂机器学习的。大家说的懂Java什么的我觉得是数据挖掘工程师了。数据分析和数据挖掘需要掌握的技能有什么区别? – 纪路的回答须知数据分析师到数据挖掘工程师之间还差了100个程序员。下面贴出阿里的“数据分析师职位技能树分析,进阿里什么难度大家懂,所以应聘小公司“数据分析师岗位的话技能要求可适当放低。””校园招聘时一位应聘“数据分析师”职位的学生应该具备哪些技能? – 知乎用户的回答
如果你要入坑数据分析师,我建议你从四方面入门: (根据阿里数据分析师试卷)
1.统计学
2.SQL
3.spss
4.R语言
统计学绝对是数据分析师的核心竞争力,是你技能树的骨干,你要知道过去数据分析也是直接靠人工计算的。但是现在数据量级越来越大,靠手算已经不能解决问题了。所以我们需要一些工具来帮助我们处理数据。比如spss就是一个专门为数据分析开发出来的成品软件,已经非常成熟了。你可能听别人说数据分析师要会spss和SAS,其实呢,他们就相当于PPT和Keynote的关系。工具嘛,会一门就行。对于你这种还没入门的,spss比SAS简单,你可以就学spss不学SAS。那SQL是干什么的呢,它是数据库语言,也就是说数据太多了你要建个仓库把它们分门别类的放好,方便查找。R语言呢,是专门用来统计和制图的一门编程语言,也是数据分析的利器。但是呢,其实spss已经有很多功能了,所以R语言并非必要,只能说是个加分项。
所以只要你统计学的好,spss和SQL也会了,基本上就差不多了。
至于学习难度呢,统计学选外国的教程看起来思路就明晰很多。SQL选对了书一点也不难,spss比SAS简单好多,就是一个直接点的软件,R语言跟你想的不一样,它也跟一般的编程语言不同。不需要多少编程基础,非常适合作为文科生的你。
话不多说,直接推荐入门书籍:
1.统计学:国外的统计学书籍你自己找找,看书做练习题。
2.SQL:《head first SQL》强推,超级简单
3.spss……这个都可以,在网上找找课件
4.R语言:可以从code school上R的入门教程学起,书的话《实战R语言》《R for beginners》《R语言核心技术手册》 入门之后再多分析case,多运用。
还有这个答案,很值得参考如何快速成为数据分析师? – 卡牌大师的回答
但是入门之后,往深里学的话还是要弥补一下自己的数学方面的短板,高数、现代、离散数学(计算机数学)和数据结构(计算机数学)等。尤其离散数字。前期你也许感受不到这个的重要性。可是后期你会越来越感受到。比如你学R语言的xx包,那个包有个论文,然后你看论文发现里面讲了有向图,你就会想这个有向图是个什么鬼。然后你学了离散数学就知道了。数据分析师总之是一个数学和计算机交汇处的职业,所以计算机方面比如网页分析等等也需要涉及一些。这些也并没有你想象的难。我们科班出身的也就是一门学了一学期而已。
然后关于如何入门数据分析师和数据分析师的要求,推荐你翻一翻上关于数据分析师的答案。多看看,然后制定自己的学习计划。关于数据分析、挖掘和R语言的公众号和资源。还有一些博客、统计之都等等可以去看看。
最后,要对自己有信心,有一个idea就去实现它。这是完全可能的。多看书,多刷题,刷到一定数量开始尝试解决实际问题。我有个文科同学就做了一个学期习题期末统计得了我们班最高分 99。现在统计很厉害。
但是我觉得你更应该考虑的是你的职业规划,你学数据分析到底是准备现在就靠这个找工作呢还是把它当做未来的跳板?如果在小公司,数据分析师技能要求并不高,你也许学个几个月就可以去了。可是与之对应,工资也并不高。你不一定愿意。如果去大公司呢,技能要求高,那需要一定的时间。
总之,相信自己,文理科本来就是一个人为的划分而已,大家的脑结构并无显著差异。加油
数据分析咨询请扫描二维码
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21