
小白学数据分析--充值记录分析
充值记录分析的方法有很多种,维度很多,今天就说说一个比较初级的分析方法,希望对于各位有一定的帮助和指导。
首先来看一下充值记录的格式,一般而言我们取到的数据都是交易格式(什么事交易格式这里不说了,大家应该都了解)
以上为我们看到的交易记录,这样的一份充值交易记录究竟我们能够做一些什么样的研究很分析?下面就简单说一下我的想法和思路,大家来看看。
我们知道在做周报、月报等分析时,经常会使用ARPU指标,一般的方法是:
总充值(总消耗)/充值人数(消耗人数)
然而这样的ARPU计算其实存在一定的问题,因为ARPU的高低容易受到这段时期的版本、充值人数、流失情况、版本IB等很多的因素影响,在每个公司的内部数据分析报告上不会就简单的给出ARPU指标,就胡乱的分析(还是那句话,不懂得业务,就不要数据分析)。今天我们撇开那些影响因素不谈,单从ARPU本身来衡量,根据ARPU的计算公式,ARPU直接受到人数和充值总额的影响,实际上上ARPU的升降受影响比较大的是充值额,当然不是绝对的。因为APA是一个付费金字塔,处于顶端的APA每个人的充值贡献往往是低端群体的基本甚至是几十倍,这些APA的贡献某种意义上是拉高了ARPU,反过来,如果低端APA过多,此时又会拉低ARPU,从这个角度来看我们不能简单的看待报告中的ARPU指标,唯ARPU论,还要参考付费渗透率、流失率、购买力等等很多因素。
而在这些众多考虑的方面之一,就是需要我们把ARPU进一步拆解和细分,这里我们就要用到充值记录的处理和分析,关于购买记录和购买ARPU以后会继续写一下。如刚才上述的充值记录,我们往往取到的充值数据就如同以上的形式,对于这样的交易记录,对于我们而言如果要利用,需要进行一下处理,假如我们取1个月的充值数据,以下为处理以后的数据:
这里说明一下,实际上账户1在一个月充值两次,分别为100和25,处理后的账户1个月总共充值125元,并且有充值活跃的天数为2天(其实这个对于购买活跃度更加有用),之所以要加上这个充值或者购买活跃度,原因在于一般游戏中玩家或选择每月一次性充值就OK,然而当玩家每月充值频繁起来,活跃度提升,很大程度上归结为几点原因:一、消费透支,比如奖券赌博性质的道具;二、大笔购买导致存留不足;三、积攒、收集、合成缺少微量付费道具,补齐型消费;四、交互型消费,公会、帮派、战队、交友等购买赠送需求。
在得到以上格式的充值数据后,我们就可以进行充值数据的分析,其实方法很简单,通过Excel的描述分析或者SPSS的描述性分析,求出充值数据中的中位数、众数、四分位数。之所以要求出这些统计指标,目的在于同ARPU(算术平均数)进行比较,ARPU与中位数、众数的距离和偏差从侧面可以反映出目前的ARPU是否平衡和良性,这是一种考察ARPU的方式,从玩家的充值数据的计算和分析上,来看看玩家充值是否符合正态分布,也可以进行正态性检验或者通过查看偏度和峰度系数。
以上说的是第一部分分析,此外根据充值数据,通过Excel的数据透视表,进行充值数据的汇总,之后通过组合功能,设置步长,进而我们就能具体查看在ARPU之下具体有多少APA,之前在文章中,我们谈论过APA存在一个金子塔的模型,也就是说APA存在低端付费玩家,中端付费玩家,高端付费玩家(笼统的说),通过ARPU的位置和在ARPU之下的具体的APA群体数量来确定究竟在金字塔模型上有多少玩家处于何种阶段和级别。
有一种情况,我们不得不警惕,通过ARPU来看玩家的消费不是非常好的方式,因为通过低端或者高端玩家的拉动,ARPU表现出的水平不一定是整体玩家的真实充值和消费水平,所以要通过数据透视表的步长计算以及描述性统计更全面的衡量的ARPU。当然了,这只是就ARPU本身出发来分析,但是ARPU背后的信息还需要结合其他指标和游戏设计、运营活动等信息来综合分析,说到底还是要先懂的业务,深刻地理解游戏系统、运营活动等方面来进行接下来的数据分析。
P.S.最近在做一些分析是时,发现很多人还是从单一数据指标入手分析问题,这种方式是不可取的,不是说体系不重要,但是就一些问题而言,我们必须要建立一个分析的数据框架,有了框架,分析才能深刻和彻底,就目前的数据分析而言,我们不缺少数据,不缺少数据点,在数据越来越多的情况下,如果建立一套合适的解决问题的数据框架是非常重要的。一方面不要只从一个指标入手,单点分析,只看到大象屁股,没看到整个大象。另一方面,也不能为了有而有,建立一些数据框架,大而空,实际业务问题又不能在这个框架下有效的解决并作出决策。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05