
规划求解来计算最小化运输成本
今天我们根据一个实例来学习一下用Excel的规划求解来计算最小化运输成本。
某超市从A,B,c三个地方采购苹果,运往4个消费区:首都圈、中部、关西、九州。运输路线不同,运输一箱苹果的成本也不同(表1)。假设苹果种类没有差异,那么为了实现最小运输成本,从哪个产地运往哪个消费区以及运输多少数量最适当呢?但前提是必须满足各个消费区的需求量,同时各个产地的采购能力有限。
这种问题叫做运输问题,可以用规划求解简单解决。
首先,制作如图1所示的工作表。上方的表格(单元格A3——F7)是表1中的数据,下方的表格(单元格A10一G14)用于计算。
在单元格B11——E13中求从各个产地运往各个消费区的运输量(可变单元格),在单元格G14中求总运输成本(目的单元格)。在计算表中输入计算公式(图2)。在单元格B14——E14中显示各个消费区的总需求量。在F11——F13中输入计算各个产地的总采购量的公式。
总运输成本等于从各个产地到各个消费区的运输单价×运输量的总和:
总运输成本(单元格G14)=B4*B11+c4*c11+D4*D11+E4*E11+B5*B12+C5*c12+D5*D12+E5*E12+B6*B13+C6*C13+D6*D13+E6*E13
但是,这样需要计算包含3行x4列的两个表格的各个因子乘积的总和,非常麻烦。
然而使用Excel的SUMPRODUCT函数(积和甬数),可以一次性完成相应行列的各个同子乘积的总和,非常方便。
=SUMPRODUCT(B4:E6、B11:E13)
在单元格G14中,求出总运输成本。
完成上述工作后。运行规划求解。单击“工具”-“规划求解”。弹出“规划求解参数”对话框。在“设置目标单元格”中,指定计算总运输成本的单元格G14。在“等于”中选择“最小值”,在“可变单元格”中指定单元格B11——E13(图3)。
接下来,设定约束条件。由于苹果以箱为单位,没有零数,因此指定整数条件(参照补充)。单击“添加”按钮(图3),弹出“添加约束”对话框(图4)。在左边的“单元格引用位置”中指定可变单元格B11——E13。指定中间文本框的比较符号“int”,右边的“约束值”自动显示出“整数”。
为了输入下述约束条件,单击图4的“添加”按钮,设定运往各个消费区的总运输量大卜需求量的约束条件:
再次单击“添加”按钮,设定从各个产地发送的总运输量小于采购能力的约束条件:
F11:F13≤F4:F6
最后,单击“确定”按钮。
运输量不能是负数。单击“选项”按钮。在“规划求解选项”对话框中,选中“假定非负”,单击“确定”按钮。
在“规划求解参数”对话框中,单击“求解”按钮后,显示“规划求解找到一解,可满足所有的约束及最优状况”,可得如图5所示的最优运输量。
从产地A运往首都圈1800箱,关西3000箱,九州1500箱I从产地B运往中部2500箱;从产地c运往首都圈3700箱。此时运输成本最小,最小运输成本是1501000日元。
以上简要介绍了使用规划求解求最优化问题的方法。实际上,在经营活动中最优规划并非一次性完成。求出结果后,必须分析这个结果足否合适;若不合适,要研究应该改善哪此方而。规划求解提供用于分析的分析报告。
分析报告“有二种类型: “运算结果报告”、 “敏感陆报告”、 “极限值报告”。
各个报告的基本内容如下所示。这里将4 2节“例题4 1最优生产计划”的分析报告用图4 15——4 17表示出来。
1、运算结果报告(图6)
运算结果报告显示“日标单元格”、“可变单元格”和“约束”的状况。表示“目标单元格”和“可变单元格”的初值和终值,是否满足约束条件以及与条件之间的差。
2、敏感性报告(图7)
敏感性报告显示当“可变单元格”和“约束”稍微变化时,“目杯单元格”的数值受到多大程度的影响。
3、极限值报告(图8)
极限值报告显示在约束条件范围内可变单元格的数值的可增减量。 我们已经学会了用Excel的规划求解来计算最小化运输成本。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10