大数据时代的学习与评价:学习证据源自何处
大数据技术已逐步进入学校教育当中。数据量的大小不是我们判断其是否为“大数据”的唯一依据,我们还应从数据收集源头、数据节点规模、测量对象、机器作用及数据分析者职责等角度对其进行综合认识。
数据收集源头
得 益于信息技术的迅猛发展,人们可以将学习证据的收集嵌入到整个学习过程中。这些嵌入式数据节点可能很小,或是为学习者提供的反馈;或是个性化学习环境中为 个别学生下一步学习做出的决策;它们或聚合到更高层次,为学习者特征分析提供依据;或在学校、班级、小组、个体层面生成数据,为教育管理中的问责服务。
坐 拥更全面的数据源,人们有可能超越传统的测试手段。嵌入式评估将模糊形成性评价与总结性评价的界限。当学习过程嵌入了数据收集功能时,人们可以追踪学习者 的学习活动、记录学习过程、分析学习成果的成因和品质。学习分析与数据挖掘可以归纳出学习进展的总结性信息;它同时又能全方位地深入到具体项目以及学习者 所产生的任何一个数据节点中,浏览过程性信息。在此背景下,“反思性教学法”将取代传统的“教学—评价”二元教学法。传统的形成性评价与总结性评价是不同 目的、不同形式的数据收集方式;未来,我们可能需要“前瞻式学习分析”与“回顾式学习分析”,它们所处理的不是不同批次的数据,而是针对同一批数据从前瞻 或回顾的角度进行分析和利用。
数据节点的规模
与 大教育中大数据的“大”一样重要的是,其数据节点的“小”。事实上,这是数据变得更“大”的唯一原因。“小”节点可能表现为学习者回答的一个问题、在模拟 情境中的一个动作,或在论坛当中的一次评论。更“小”的形式,还可能是一次按键、一个时间戳、导航路径中的一次点击、维基百科或博客中的某次编辑历史。学 习本身并没有变得更“大”,只是我们可以附着记录的学习事件变得更“小”了,它们的总和也因此前所未有地变大,以至于如果没有计算机综合技术的支持,人类 是难以处理和驾驭它们的。
测量的对象
经 典测试大多沿袭以下路线:学习中的认知发展——测试中的观察——将测试结果作为认知的证据进行解释。传统的测试对象单独位于学习过程之后,并支持回顾式解 释。然而,在以机器为中介的学习中,人们对学习证据的关注点已经转移到真实的知识人工制品上,并倾向于记录学习者利用学科知识所进行的实践,因为知识表征 可能存在于学科知识实践的人工制品及其建构过程之中。换句话说,我们分析的重点不在于学习者所能思考的内容,而在于他们所做的知识表征。
这 些人工制品含纳了许多复杂认知的表现,具体如科学实验报告、人类或社会现象报告、历史学论文、带有注释的艺术品、视频故事、商业案例研究、发明或设计的物 品、数学或统计案例、田野研究报告或根据用户故事编写的可执行的计算机代码等。这些人工制品是可识别的、可评估的、可衡量的。它的源起是可被验证的,其构 建过程中的任何一个步骤都是可被追溯的。围绕知识加工展开的数据收集范围也被极大地拓展:自然语言处理、任务所花时间、同行或自我回顾、同行评议、编辑历 史和导航路径等。
机器的作用
大 数据并不完全依赖由机器生成,尽管机器可以通过人格化的用户界面表现出非凡的智力。计算机仅是一种人类沟通的技巧、对原有文本结构的扩展。它是人类认知的 补充体、社会思想的延伸、文明传承史中的一部分。在大数据时代,通过收集和计算大量前人的判断,人类的智慧得以放大。数以百万计的、微小的人类事件被记录 在可以聚合的数据节点之中,为教师、教育项目设计师或研究人员提供重要证据。机器看起来十分聪慧,但它们聪慧的意义仅限于它们所收集并计算的众多人类智 慧,就像书籍、图书馆和教师过去所做的那样,只不过它们比真人教师和学习者所能处理的数据量更大罢了。计算机的智慧是有限的,它们只不过是记录和外化人类 思想的机器而已。
数据分析师职责
现 如今,人人都是数据分析师。在软件工程师和用户界面设计师创造的环境中,用户没有必要掌握其中的模糊统计公式,因为突出的学习信息将以可视化的方式呈现, 用户可以利用它们深入追溯具体的学习序列。教师通过访问数据来了解学生并调整教学。在这种证据化的环境下,教师可以也应该是位研究者。这可能需要他们具备 一种新型的数据读写能力,掌握数据分析知识,以支持基于证据的决策。这些数据也可以呈现给学生,有助于他们进行迭代反馈、形成性评价和进展概述,学生将成 为掌控自己学习进程的研究者。此外,专业研究者也可以使用同批数据。大数据时代,传统的研究者与实践者、观察者与被观察者之间的区别逐渐模糊。这种特性彰 显的是大数据的可访问维度,在某种程度上也决定了数据的外观、形式与目的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31