小白学数据分析--到底要怎么做流失分析
最近看了很多关于流失分析的文章,也构建了一些模型,流失这个问题看似有些让人抓不住一根主线来做,这几天也有几个朋友问我怎么来做流失的分析,但是最近工作变动,外加上很忙,就没有很好的跟他们说说这个问题。说道流失流失分析,很多人都知道使用决策树算法,C5.0、Chaid、Quest或者贝叶斯,也有用聚类分析的,总的来说流失分析的方法很多,但这些都是技术层面的,也算不上是一个流失模型。
前几天看到一篇文章来讲述怎么分析永恒之塔的流失,方法和过程真的很不错,不过流失分析远比这个还要多,其原因在于,那篇文章中,作者是选取了1-10级的新手作为研究对象,而实际上,流失分析面向的对象不仅仅就是新手(废话,谁都知道!),这句话是句废话,现在看,做数据分析的都明白,然而一旦真的做数据分析,研究流失率时,往往就忽略了我们要对那些人进行流失分析,眉毛胡子一把抓。
早先写过一篇关于流失分析设计的文章,但是后来反映设计的过于复杂和繁琐,没必要这么分析。其实,我觉得很有必要。流失分析不是你信手拈来就开始做你的流失分析的。在之前的文章中,主要设计的是历史用户的流失分析方式,把历史用户的流失分成了留存、沉默、流失、回流、植物等几类情况,实际上这种分类的形式是由玩家的游戏生命进程(生命周期)决定的,原因我觉得有以下几点:
1.游戏进程不同,用户的反馈不同;
2.不同阶段的流失用户,不同的挽留措施;
3.不同生命进程,流失用户特征不同。
正如文章所言,流失分析很多情况下只是告诉你谁会流失,流失的人有什么特征,而这两点对应的是流失分析的两个方面:
1.谁会流失->流失用户的预测,告诉你流失的可能;
2.流失特征->流失用户的特征,告诉你流失的特征。
而流失分析最终的目的是通过这两点,仅仅结合业务分析流失的原因(再好的算法,模型不会告诉你原因),而解决了谁会流失,流失特征,流失的原因,那么就可以进行挽留措施的实施,到此一个完整的流失分析闭环才形成。
形成闭环的原因在于,新的一批用户会继续检验我们的流失分析模型,我们希望在同样的游戏进程时期或者状态下,能够通过不断的修正模型,使之具有普适性。这样的一些模型最后组合起来,就可以比较全面的描述玩家不同的游戏生命进程的流失特征。当然这需要不断的实验和分析,因为用户的质量也是要考虑的。最后,建立在反复使用模型分析的基础上,得到显著性的模型框架。
而这个过程中,值得我们注意的是,往往我们很多时候做的是这其中一小部分,而我们恰恰把这一小部分放大认为是流失分析的全部,比如我们做了40级-50级的流失用户,找出流失用户可能性,流失特征,但是往往忽略做一些挽留的措施,挽留的措施有的是软性的,比如通过活动,奖励等实施,也有通过更改系统设计来弥补,但是这要看你做的流失分析用户流失的严重程度,换句话说如果这一阶段的流失是一部分客群引起的高流失,而这部分客群不代表我们整体客群(流失客群的特征与之前历史客群在该阶段流失特征不符合,那么这就不是系统设计的因素造成的),此时就不能轻易使用更改系统设计的办法,多数情况下采取软性的手段,帮助用户过度。
然而,回头来看,站在一个高度来看我们是根据了玩家的游戏进程到什么阶段(处于的状态)来确定我们的流失分析对象和方法的。
看了永恒之塔的流失分析我发现,之前的针对新手的流失分析没有深入的做过研究,PRARA模型关注的很多也是用户保有留存的问题,可以看得出一批新用户,我们关注更多的是留存问题,而那些历史用户我们关注的流失问题。
针对用户流失的设计我们大概有月流失,周流失,沉默,然而我们在这块的分析远远没有达到一个高度,毕竟我们的收入主体还是来源于这些历史用户,本身来说付费转化,游戏学习成本都很低了,专注这些用户,做好挽留发挥的效益更大。
然而新用户正如文章也提及的情况,新用户对游戏的学习,操控,熟悉还不完全,即使我们获取了信息,流失特征,流失可能性,大概我们想找出来玩家为什么还是会离开难度就会比较大,即使我们有最好的新手体验流程和新手缓冲期,但不能避免的用户流失(当然这不是说新用户的留存、流失分析不重要)。然而反过来当玩家游戏生命周期进入稳定期或者提升期,却面临了很大的流失,那么我们获取流失特征,分析流失可能性,最后做出挽留得到的效益远远大于新手的流失分析。
说了上面这句话大概看到的人会笑,会喷我,补充一句的是,一个游戏就像一个池子,有进水口,也有出水口,我们希望进水口大,出水口小,然而进水口再大,你不进水,有一天出水口也会让池子干涸,因此控制出水的同时,也要想办法做好进水口,也就是如何做好新玩家的分析,预测,挽留。因为留下的新玩家有一天也会变成我们定义的老用户,进而变成我们要设法挽留的老用户。每个玩家在游戏中都是有生命周期的,流失分析的目的是拉长这个周期的同时,将价值发挥到最大。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13