小白学数据分析--到底要怎么做流失分析
最近看了很多关于流失分析的文章,也构建了一些模型,流失这个问题看似有些让人抓不住一根主线来做,这几天也有几个朋友问我怎么来做流失的分析,但是最近工作变动,外加上很忙,就没有很好的跟他们说说这个问题。说道流失流失分析,很多人都知道使用决策树算法,C5.0、Chaid、Quest或者贝叶斯,也有用聚类分析的,总的来说流失分析的方法很多,但这些都是技术层面的,也算不上是一个流失模型。
前几天看到一篇文章来讲述怎么分析永恒之塔的流失,方法和过程真的很不错,不过流失分析远比这个还要多,其原因在于,那篇文章中,作者是选取了1-10级的新手作为研究对象,而实际上,流失分析面向的对象不仅仅就是新手(废话,谁都知道!),这句话是句废话,现在看,做数据分析的都明白,然而一旦真的做数据分析,研究流失率时,往往就忽略了我们要对那些人进行流失分析,眉毛胡子一把抓。
早先写过一篇关于流失分析设计的文章,但是后来反映设计的过于复杂和繁琐,没必要这么分析。其实,我觉得很有必要。流失分析不是你信手拈来就开始做你的流失分析的。在之前的文章中,主要设计的是历史用户的流失分析方式,把历史用户的流失分成了留存、沉默、流失、回流、植物等几类情况,实际上这种分类的形式是由玩家的游戏生命进程(生命周期)决定的,原因我觉得有以下几点:
1.游戏进程不同,用户的反馈不同;
2.不同阶段的流失用户,不同的挽留措施;
3.不同生命进程,流失用户特征不同。
正如文章所言,流失分析很多情况下只是告诉你谁会流失,流失的人有什么特征,而这两点对应的是流失分析的两个方面:
1.谁会流失->流失用户的预测,告诉你流失的可能;
2.流失特征->流失用户的特征,告诉你流失的特征。
而流失分析最终的目的是通过这两点,仅仅结合业务分析流失的原因(再好的算法,模型不会告诉你原因),而解决了谁会流失,流失特征,流失的原因,那么就可以进行挽留措施的实施,到此一个完整的流失分析闭环才形成。
形成闭环的原因在于,新的一批用户会继续检验我们的流失分析模型,我们希望在同样的游戏进程时期或者状态下,能够通过不断的修正模型,使之具有普适性。这样的一些模型最后组合起来,就可以比较全面的描述玩家不同的游戏生命进程的流失特征。当然这需要不断的实验和分析,因为用户的质量也是要考虑的。最后,建立在反复使用模型分析的基础上,得到显著性的模型框架。
而这个过程中,值得我们注意的是,往往我们很多时候做的是这其中一小部分,而我们恰恰把这一小部分放大认为是流失分析的全部,比如我们做了40级-50级的流失用户,找出流失用户可能性,流失特征,但是往往忽略做一些挽留的措施,挽留的措施有的是软性的,比如通过活动,奖励等实施,也有通过更改系统设计来弥补,但是这要看你做的流失分析用户流失的严重程度,换句话说如果这一阶段的流失是一部分客群引起的高流失,而这部分客群不代表我们整体客群(流失客群的特征与之前历史客群在该阶段流失特征不符合,那么这就不是系统设计的因素造成的),此时就不能轻易使用更改系统设计的办法,多数情况下采取软性的手段,帮助用户过度。
然而,回头来看,站在一个高度来看我们是根据了玩家的游戏进程到什么阶段(处于的状态)来确定我们的流失分析对象和方法的。
看了永恒之塔的流失分析我发现,之前的针对新手的流失分析没有深入的做过研究,PRARA模型关注的很多也是用户保有留存的问题,可以看得出一批新用户,我们关注更多的是留存问题,而那些历史用户我们关注的流失问题。
针对用户流失的设计我们大概有月流失,周流失,沉默,然而我们在这块的分析远远没有达到一个高度,毕竟我们的收入主体还是来源于这些历史用户,本身来说付费转化,游戏学习成本都很低了,专注这些用户,做好挽留发挥的效益更大。
然而新用户正如文章也提及的情况,新用户对游戏的学习,操控,熟悉还不完全,即使我们获取了信息,流失特征,流失可能性,大概我们想找出来玩家为什么还是会离开难度就会比较大,即使我们有最好的新手体验流程和新手缓冲期,但不能避免的用户流失(当然这不是说新用户的留存、流失分析不重要)。然而反过来当玩家游戏生命周期进入稳定期或者提升期,却面临了很大的流失,那么我们获取流失特征,分析流失可能性,最后做出挽留得到的效益远远大于新手的流失分析。
说了上面这句话大概看到的人会笑,会喷我,补充一句的是,一个游戏就像一个池子,有进水口,也有出水口,我们希望进水口大,出水口小,然而进水口再大,你不进水,有一天出水口也会让池子干涸,因此控制出水的同时,也要想办法做好进水口,也就是如何做好新玩家的分析,预测,挽留。因为留下的新玩家有一天也会变成我们定义的老用户,进而变成我们要设法挽留的老用户。每个玩家在游戏中都是有生命周期的,流失分析的目的是拉长这个周期的同时,将价值发挥到最大。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12