
小白学数据分析--付费渗透率再研究
今天所谈到的东西其实是关于新增付费用户的研究模型的内容,谈到模型,有时候我们过于神话了,模型其实最后就是一套方法论,我自己觉得这倒是自己思维思考最后落地的一个载体,因为思维要实现、训练、评估,最后出现一个载体来落实我们思维的所思所考这个载体就是模型。在没有经过实现、训练、评估之前,算不上一个模型,只有经历以上的过程才是一个模型。
之前有说过付费用户金字塔模型,付费渗透率_I的内容分析,今天就的内容算是对于付费渗透率的再研究。可以肯定一点的是我们之前对于付费用户金子塔的研究包含了所有付费用户的成分,我们之前的方法是从用户贡献度或者说是价值量来衡量,把用户分成了鲸鱼用户、海豚用户、小鱼用户。但是我们今天将从用户的生命周期角度来剖析这个问题,进而引出付费渗透率的再研究。
付费用户的构成
付费用户是一个很复杂的群体,第一层认识使我们普遍认识的,也是我们最多采用的数据分析是层次,但是从第二层开始的细分,对于我们的后续很多分析其实是很有益处的。我有一个猜想:
如果用户金子塔是稳定的,那么付费渗透率的提升是否一定有意义?
提出这个假设的原因在于我们对不同付费群的研究中发现,群体用户的特征在最初的阶段就已经形成了,换句话说我们推测一个用户在一款游戏的付费能力基本上就是圈定了,当然针对这一点很多人会产生质疑,因为通过游戏付费“陷阱”、粘性、延伸消费,进一步扩大需求,刺激消费。这一点确实是存在的,然而如果你仔细去分析数据,很多玩家在整个的生命进程中,消费基本上是在自己的承受范围之内和压力之内。
我们不排除极限用户,比如深度迷恋游戏以至于全面投入游戏中,但是这类的用户所占比例很小。进而从这个角度我们来分析,每个人的付费能力是基本固定的(想要延伸和刺激消费,就得更新、运营),那么我们不断拉高的渗透率其实没什么太大的作用,因为付费的人终究付费,花费多的人(有钱人)自然就愿意花费,如果你的游戏足够值得他们去消费,那些本来付费就很少的人,玩到最后也会花费很少,甚至就是流失,因为游戏太多,选择太多,诱惑太多。这么看,渗透率意义是局限的。
那么在这种情况下,我们可以来做一件事,那就是在付费用户的初期,我们就能够预测和判断付费用户的付费能力,而不是通过后期的实实在在的数据来验证究竟哪些是真正的鲸鱼,哪些是海豚,哪些又是小鱼。这点也恰恰反映了数据分析的价值所在,用过去发现利用未来,而不是用未来验证说明过去,因为如果那样,你没有进步的可能。因为前进与创新的动力来自于对未知的探索和训练,这未知是指导的、灵感的、偶然的。
付费渗透率的结构化
在上次的分析论述中,我其实就是想将付费渗透率结构化,所谓结构化,就是分层建立付费渗透率,因为我们在付费用户的研究上已经建立了金子塔模型,那么过去我们使用一个付费渗透率指标去衡量的方式需要进一步细化,当然这不是说原来的方式不对,因为在一些高级别的分析报告和演讲中,我们就需要这种一个指标就OK了。
然而作为一个分析师,在具体面对业务时,我们不能够就这样的粗放使用一个付费渗透率去分析问题,因为这样会掩盖掉很多的问题。因此我建议的结构就是分层付费渗透率:
W-PUR:鲸鱼用户的付费渗透率
D-PUR:海豚用户的付费渗透率
F-PUR:小鱼用户的付费渗透率
这里面可能就存在一个问题,估计大家都有这个疑问,我们该如何计算这个PUR呢?计算方法如下
鲸鱼用户/活跃用户数量
这里需要解释一下,这里的鲸鱼用户是基于历史鲸鱼用户特征计算出来的本月的鲸鱼用户,本身是一种预测数据,但肯定是付费用户,活跃用户即MAU。
付费渗透率的序列化
留存率我想大概大家都比较熟悉,比如次日、3日、7日、30日、这是从对一批或者一个渠道新登用户的一种观察分析手段,是一种时间序列化的方式,由此我想对于付费渗透率我们也可以进行时间序列化。
即推出首日、次日、7日、30日付费渗透率的,但是明确一点的是这里的用户是新登用户。其定义形式如下:
N日付费渗透率
限定时间内的新登用户,N日付费的用户/限定时间内的新登用户
假设10月8日有500人新登用户,首日50人付费,那么首日的付费率为50/500=10%;
假设10月8日有500人新登用户,10月9日(即次日)有25人付费,则次日付费率为25/500=5%;
这种方式的付费比率从另外一个角度将我们之前统计的付费渗透率进行了细分和立体化,这种付费渗透率细分把新用户和活跃用户的付费问题明确了,因为有的新用户是首日之日便开始付费,而有的新登用户是在一定时期内选择付费,但是达不到活跃用户的标准。这样也能帮助我们更加细致的研究活跃用户的自然付费周期。
以上的是针对具体每日的付费渗透率分析,当然了就像留存率研究一样,我们可以限定时间为周,即一周的新登用户在下周内的付费渗透率研究,这都是可行的。具体还要看自己需要。
此处是借助于留存率的模式进行的付费渗透率研究,方法和之前的其实本质上是一样的,稍加改动,至于该方法是否符合您的产品需要和分析需要,这要根据自己实际情况,这里所述的内容仅供参考,作为探索和讨论之用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03