大数据“大”在哪里
“大数据”涵盖了人们在大规模数据的基础上可以做的事情,大数据让我们以一种前所未有的方式通过对海量数据进行分析,获得有巨大价值的产品和服务,或深刻的洞见,最终形成变革之力。
作为2015年和2016年的重点话题,大数据在成为资本市场风口的同时,也上升到了国家战略层面。国务院在《推进普惠金融发展规划(2016~2020年)》中直接提到,“鼓励金融机构运用大数据、云计算等新兴信息技术,打造互联网金融服务平台”。于是,国内外各金融与类金融机构纷纷上马大数据应用,希望可以借此带来技术上的突破、提升获客能力、升级风控体系、探索新型态基于场景化的消费金融市场,一夜之间,大数据仿佛成了突破现有发展瓶颈的万能灵药。
对金融行业来讲,大数据“大”在哪?要理解这个问题,需要和传统数据做个比较。只有从本质上区分它们的不同,才能更好地理解和更有针对性地应用这一宝贵的新资源。
传统金融机构,在建设信用风险打分模型的数据来源主要有几个方面:第一,人民银行征信中心数据;第二,客户自己提交的外部个人财力证明数据,如房产证、汽车行驶证、单位开具的收入证明等;第三,金融机构或集团内部积累的客户历史数据,如银行的工资流水,历史贷款数据,保险数据等。传统数据优点是这些数据和金融的价值相关性高、数据采集规范。金融机构基于这些高价值数据,纷纷设计出各种信用风险评分模型,最终实现对客户信用风险的打分评估,是目前较为成熟的运行方式。
但这样获取的信息,其缺点也是显而易见的,主要表现在维度较小,覆盖的人群有限,对于新形态的互联网模式适应程度较差,也不容易达到普惠覆盖的目的。
在互联网时代,客户信息的获取渠道更加多元化,主要包括内部收集和外部渠道,内部收集指各互联网生态体系内,长期积累的用户数据。外部渠道则是指各种数据源采集,如通信数据、社保数据、法院失信数据、交通数据、保险数据等等。
大数据的诞生正好契合了互联时代的要求。大数据的“大”,首先体现在数据体量上,首先是指大型数据集,一般在10TB规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量;其次是指数据类别大,数据来自多种数据源,数据种类和格式日渐丰富,已冲破了以前所限定的结构化数据范畴,囊括了半结构化和非结构化数据;第三是数据处理速度快,在数据量非常庞大的情况下,也能够做到数据的实时处理。
基于以上几点,大数据特征反映在如下方面,第一,数据覆盖面广。各大互联网集团,通过各种APP采集积累了用户行为各方面的数据,如搜素历史数据、电商交易数据、支付交易数据、社交数据,以及各种APP采集的用户行为数据等等。第二,大量非结构化的破碎数据导致的数据不很准确。数据采集渠道的多元化和非标准化,随之带来的问题就是,客户信息不很准确,同一客户不同维度的信息经常不完整或匹配不上。第三,数据来源不稳定。不少大数据采集通过灰色渠道收集个人隐私数据,数据连续性和可持续性欠佳,往往有数据过时或缺失问题。第四,消费数据和信用数据关联性弱。
由此可见,大数据所谓的“大”,并非如传说中的那样能包治百病。随着传统数据源局限的被打破,社交数据、企业内容、交易与应用数据等新数据源的兴起,企业愈发需要有效的信息分析处理能力来确保其真实性及安全性。如同原油需要经过层层的提炼,才能成为人类可以大量应用的石油产品,大数据也需要经过精心的筛选和应用设计,才能起到实质的功效。
尽管市场上常见的大数据机构收集了各种维度的客户行为信息,试图描绘客户画像,但消费类的数据和客户信用风险以及还款意愿并不直接相关。目前的大数据公司往往缺少内部征信数据、外部征信数据、个人资产数据等强金融变量数据,而集中在客户衣食住行和社交信息,要直接拿来作为信用风险评分模型的有效性依旧有待考验。考虑到大数据和传统金融数据的差异性和互补性,所以更多的应该是如何通过模型的设计和提炼,使得这些大数据源经过提炼,可以从原油变成成品石油般广为应用。
“大数据”的概念其实是涵盖了人们在大规模数据的基础上可以做的事情,而这些事情在小规模数据的基础上是无法实现的。换句话说,大数据让我们以一种前所未有的方式,通过对海量数据进行分析,获得有巨大价值的产品和服务,或深刻的洞见,最终形成变革之力。
数据分析咨询请扫描二维码
数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-26技术技能 - 编程能力: 数据分析师需要掌握至少一门编程语言,如Python、R或SQL。这些语言对于数据处理、建模和分析至关重要。例 ...
2024-11-26数据分析领域涵盖多样性岗位,根据工作职责和技能需求划分。这些角色在企业中扮演关键角色,帮助组织制定战略、优化流程并实现商 ...
2024-11-26数据分析是一种通过收集、处理、解释和展示数据,以获得见解和决策支持的过程。这个领域涉及使用统计学、计算机科学和商业智能等 ...
2024-11-26数据分析领域正日益成为当今商业世界中不可或缺的一环。随着数据量的爆炸式增长,企业越来越需要能够从这些海量信息中提炼出宝贵 ...
2024-11-26数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。在追求这一职业道路上,合适的教育和培训至关重 ...
2024-11-26数据分析师作为当今信息时代中关键的职业之一,扮演着解释、预测和推动决策的重要角色。他们需要多方位技能来处理各种复杂的数据 ...
2024-11-26数据分析师在今天的商业环境中扮演着至关重要的角色。他们需要应对各种复杂的数据分析任务和业务需求,这要求他们具备广泛的技能 ...
2024-11-26在当今快速变化的技术和市场环境中,数字化转型是企业利用数字技术全面重新设计和改造业务的重要过程。这一转型旨在通过整合云计 ...
2024-11-26数字化转型: 是企业在现代技术和市场环境不断变化的背景下,利用数字技术对其业务进行全面的重新设计和改造的过程。其核心目标是 ...
2024-11-26理论基础与高级学习 数学专业理论基础: 学生首先需要掌握数学的基础理论,包括数学分析、高等代数、几何学、常微分方程、实变函 ...
2024-11-26数字化转型:现代企业蜕变的引擎 数字化转型已然成为当今企业持续发展的关键支柱。这一过程并非简单的技术升级,更是涉及企业文 ...
2024-11-26# 数据科学与大数据技术专业学什么?就业前景与行业需求 **数字化转型:引领企业进步的关键** 数字化转型是现代企业发展的必经 ...
2024-11-26理论部分 - 基础数学理论: - 学生首先需要掌握数学的基础理论,包括数学分析、高等代数、几何学、常微分方程等。 - 这些课程 ...
2024-11-26在选择数据科学和大数据技术专业时,了解不同领域的职责和技能需求至关重要。数据治理工程师是这一领域中不可或缺的角色之一,承 ...
2024-11-26基础课程 统计学基础 - 统计学是数据分析的基石,包括概率、假设检验、回归分析等基本知识,有助于理解数据背后的意义。 - ...
2024-11-26数据分析是一门综合性学科,涉及多个领域的知识和技能。要全面掌握数据分析,需要学习以下内容: 基础课程 统计学基础:统计学 ...
2024-11-26数据治理工程师在当今信息时代扮演着至关重要的角色,负责确保组织内数据的质量、安全性和可用性。他们需要具备一系列技能和才能 ...
2024-11-26在当今数字化时代,数据被誉为新的石油,是企业最有价值的资产之一。因此,建立有效的数据战略规划对于企业的成功至关重要。数据 ...
2024-11-26<section id=
2024-11-26