小白学数据分析--留存率使用的窘境
随着移动游戏整体的火热,现在看到太多的数据,太多信息,很多时候我们仰慕和钦佩别人的成功,我们总是把这个行业达成所谓共识的一些数据来出来说明问题。因为我们笃信数据是有力的证据,并且可以说明实力。然而太多的时候,因为沾染了更多的外在气氛,以至于在一些情况下看不到自己接下来的清晰的方向。比如今天说的留存率问题。
关于留存率,之前也谈到了很多,包括计算标准和使用方法,不过细心的人应该懂得那些只是一个最初级的阶段,因为即使你知道的留存率是什么,但是你会发现你依旧不知道要去做什么?原因在于,你觉得大家都在谈论,所以,我也这么谈论。很多时候,见过很多人都在询问,这个类别的游戏,benchmarks是多少,一方面的确很有用,因为你看到了差距,另一方面,却发现,纵然自己知道差距,却依旧不知道如何弥补差距,如何解决问题。
因为,所有的数据分析和数据都是以解决问题为先。
然而,我们把数据分析和数据当做了夸夸其谈的佐料。
留存率的最大的窘境在于,即使,你了解到了你存在差距,但是你依旧找不到解决这个问题的办法。比如我们都知道我们的次日留存、7日留存水平都不是很高,需要进一步提升,但是往往我们找不到方法,很多时候,我们可能回过头来通过不断的游戏体验,去寻找问题,实则现在很多人已经知道通过留存率来分析体验的问题。然而驱动用户体验决策而有意义的成功标准,一定是可以明确的与用户行为绑定的标准,而这些行为也一定是可以通过设计来影响的行为。然而我们看到了所谓现在探讨的次日留存率和7日留存率并不能准确捕捉行为,并且帮助我们完成设计,进而影响行为。
所以,我们要解开这个窘境。
所以,我们要去寻找在留存率背后的行为,而这些行为必须要能够进行量化,同时通过设计可以影响行为。
从设计的角度来看,我们很关心如下的内容:
因为这些因素使我们通过设计可以进行改进的,而这些改进,必然会对应在一定的量化基础之上,因为刚才提到了,只有这样的标准才是存在价值的,也是可以真正通过数据分析解决问题的,换句话, 只是一个单纯的留存率指标我们并不能更加清楚的发现这些问题,抑或更多的时候,只能凭借体验和感觉来解决问题,这种情况下其实数据分析并没有发挥应有的作用。
留存用户的等级分析
我们可以通过分析次日、7日、30日用户的首日等级变化情况,了解不同质量用户区对于游戏内容和进度的把握情况,进而快速定位是否是游戏内容过难,或者新手教学没有做好导致的结果。
如上图所示,次日留存用户,在首日停留的等级有22%的是在4级,而有13%的次日留存用户直接是安装了但是没有进行游戏内容,与此同时,我们对比7日留存用户的新登日变化情况来进行对比分析:
在此,可以看到,7日留存用户中,等级达到2的用户有14%,而在次日留存用户中,首日等级达到2级的比例是18%,这点来看,7日留存用户的质量的确是高于次日留存用户。从这点来看,围绕游戏本身设计的要素,比如每日游戏时长,可以判断用户的首日游戏体验是否达到了预期的效果。所以这里我们可以去结合用户的游戏时长进行判断。
留存用户的游戏时长分析
作为每一个游戏设计者,肯定会判断自己的游戏时硬核,还是中核,或者休闲,不同的情况对应的游戏时长水平是不同的,比如下面的例子:
结合新增用户等级的变化情况来看,其实我们比较容易看到,用户的游戏时长中有30%的人在0-10s就离开了游戏,针对这点其实可以反映几个潜在的问题,比如网络的不稳定,加载问题,渠道的虚假用户等等问题。针对这款游戏10-30min用户的数量相对占比不高,因此对于那些首次接触该题材的用户来说,新手引导存在一定的问题,用户在最开始的成长遭遇了一些问题,比如初期的赠送奖励不足以让用户继续体验接下来的游戏内容。不过值得肯定的一点事,在这款游戏中,我们可以看到基本上是一个正态分布,相对合理,而在某些游戏中,比如服务器不稳定,或者网络没有解决,那么此时用户的游戏时长曲线就会变成一个偏态分布,诸如下面的情况:
这种情况,可以肯定都是存在较大的问题,游戏核心机制没有有效的吸引住用户,因此在这种情况,就需要去做比较深入分析和改进。关于接下来的问题,在后续的文章中接着说。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-30