京公网安备 11010802034615号
经营许可证编号:京B2-20210330
小白学数据分析--基于数据驱动的最佳渠道评估策略
对于游戏数据分析来说,我们要从很多方面下手,具体从数据分析角度来说,作为游戏CP需要作三块工作,第一是游戏推广,第二是游戏质量,第三是游戏运营,就这三点来看,推广是未来游戏是否有稳定人气,获得稳定收入的关键一环。

关于手机游戏的渠道分析,是很重要的分析方向,对于这一点,其实无论是端游,页游还是如今火热的手游都是一样的,也确实是作为游戏CP很头疼的事情。原因很多,就手机游戏来看,比如苹果商店的封闭性,不能进行多渠道的转化追踪;而多渠道时(比如国内现在的多个安卓渠道),追踪转化分析又太过麻烦,基本上每家的游戏少说也有20+的渠道。这点导致了,我们在做安卓市场时,面临适配,系统,分辨率等等问题。所以大家都选择在ios上先发和投入,如果OK,在进行下一步的研发运营。因为会觉得,少了适配等一些列的硬伤,倒是做起来比较容易。

然而这点其实又规避了另一个问题,那就是,国内现在无论在官方的ios商店,还是第三方的市场商店,解决了适配,但是依旧要面临对渠道的追踪。因为尽管游戏下载的最终入口是在官方[未破解情况下],抑或是第三方的破解渠道,作为CP必须面对的就是渠道转化,用户质量,谁都不想自己做一笔糊涂账。实则我们的研发之路避开了机型适配等问题,但是却面临渠道转化的障碍,进而就是如何进行优化投放。
既然大家现在很关心渠道推广优化,那么以上的问题就必须有个解决的办法。这个解决办法就是如下的最佳渠道评估策略。
所谓最佳渠道评估策略有三部分构成:

数量:
渠道获取用户能力
作为渠道而言,对于游戏的首要价值,就是大量的用户资源,这点成为了目前粗放推广最为关注的部分,因此成就了今天很多的大渠道,也因此使得很多小的CP没有竞争实力,推广上架无比艰难。
数量分析揭示了渠道的用户获取能力,再更加实际的来说,可以探测用户对渠道的粘性和忠诚度,这点对于渠道推广是有帮助的,因为如果一个渠道本身用户的成长体系不完善,不存在具有粘性的核心用户群,那么给予CP的用户资源也是有限的。
在这数量这一最粗放的力度上,我们将注重关注以下的指标:

以上几个指标,似乎是大家很常用的,但是仅仅到这个层级是远远不够的,因为我们并没有准确的去监控和识别用户的行为信息,仅仅是数量级的分析。实际上,对于某些大渠道来说,我们可以关注,玩家在活动或者更新周期,返回渠道的概率分析,这点也是值得的。
一般而言,我们可以通过安装后的注册转化率来了解渠道用户是否目标用户,当然这只是分析目标用户的第一个重要标准,同时这个转化率连带的会引发很多的实际的问题进行分析。

以上是第一个层级的分析策略,当然基于以上这些因素的分析,这里不再展开,可以根据自己的实际需要,有目的的进行实施就可以了。
质量:
玩家参与游戏情况
目前的移动互联网环境下,很多的游戏产品对于渠道推广投放,有很多是停留在数量这个层级上,稍微好一些的会关注渠道收入贡献情况,这点也是在渠道能够带来收入的前提下来进行的,不过我们似乎忽略了一些问题,那就是,在收入之前,连渠道用户的质量都不了解,就不能谈收入。因为这种情况下,会一直存在CAC〉LTV,即单用户的贡献远远小于用户获取成本。
因此,质量的分析,快速的优化,决定未来投放渠道的收入增长潜力。

以上四个指标作为质量控制的重要要素存在,帮助我们在渠道投放初期就要去了解渠道的投放质量,这点实际上相比较玉前一个层级,重点解决投放质量的问题。
平均日活跃用于了解该渠道的长期日活跃走势和平均水平,而一日玩家比例了解新增玩家中,只有在新增当天进行过游戏的玩家的比例,由于这点对于后续的留存率影响很大,所以必须要去了解留存率的水分有多少,真实的用户留存是什么水平。有关于这点在后续的文章中会继续与大家探讨。
刚才谈到了留存率,作为质量控制的一个节点,次日留存率水平在衡量渠道质量这方面还是有作用的,这是衡量渠道质量必须要考核的指标之一。
最后是首周付费比例,这点是辅助的分析渠道接下来营收能力的一个重要因素,因为渠道的用户资源最终还是要转为收入,不能完成这一步,不能完全判断一个渠道质量的价值。首周付费比例,决定了渠道推广后,用户的付费质量情况,这点可以和非推广时期的用户首周付费比例作一个对比分析。
收入
渠道收入能力情况
一如刚才所说的,渠道的用户资源,最终还是要转化为实在的收入,这是体现渠道价值的最佳方式,在这点上,我们重点覆盖以下的指标:

这几个指标的使用应该来说大家很熟悉,刚才也谈到了游戏产品的终极形态一定是要营收的,这是我们做游戏的目的,在这点的关注上,其实我们不必聚焦于详细的细分数据,只需要知道渠道究竟有多大的收入价值就可以了。当然在长期持续的过程中,我们要不断的监控和衡量渠道收益能力,做好用户获取成本和单用户收益之间的杠杆。
而以上所说的,实在宏观全局上,了解渠道与渠道之间的差异。实际上在渠道整体的策略上存在一个完整的闭环过程。

我们刚才的策略是构建了一个完整的基于渠道分析的数据体系,也就是做渠道分析该去看那些指标,以及如何作出分析。后续的其实还有详细的渠道分析,真正从具体的业务逻辑上实际分析把控,说的简单点,了解一些渠道本身的特点。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23