小白学数据分析--基于数据驱动的最佳渠道评估策略
对于游戏数据分析来说,我们要从很多方面下手,具体从数据分析角度来说,作为游戏CP需要作三块工作,第一是游戏推广,第二是游戏质量,第三是游戏运营,就这三点来看,推广是未来游戏是否有稳定人气,获得稳定收入的关键一环。
关于手机游戏的渠道分析,是很重要的分析方向,对于这一点,其实无论是端游,页游还是如今火热的手游都是一样的,也确实是作为游戏CP很头疼的事情。原因很多,就手机游戏来看,比如苹果商店的封闭性,不能进行多渠道的转化追踪;而多渠道时(比如国内现在的多个安卓渠道),追踪转化分析又太过麻烦,基本上每家的游戏少说也有20+的渠道。这点导致了,我们在做安卓市场时,面临适配,系统,分辨率等等问题。所以大家都选择在ios上先发和投入,如果OK,在进行下一步的研发运营。因为会觉得,少了适配等一些列的硬伤,倒是做起来比较容易。
然而这点其实又规避了另一个问题,那就是,国内现在无论在官方的ios商店,还是第三方的市场商店,解决了适配,但是依旧要面临对渠道的追踪。因为尽管游戏下载的最终入口是在官方[未破解情况下],抑或是第三方的破解渠道,作为CP必须面对的就是渠道转化,用户质量,谁都不想自己做一笔糊涂账。实则我们的研发之路避开了机型适配等问题,但是却面临渠道转化的障碍,进而就是如何进行优化投放。
既然大家现在很关心渠道推广优化,那么以上的问题就必须有个解决的办法。这个解决办法就是如下的最佳渠道评估策略。
所谓最佳渠道评估策略有三部分构成:
数量:
渠道获取用户能力
作为渠道而言,对于游戏的首要价值,就是大量的用户资源,这点成为了目前粗放推广最为关注的部分,因此成就了今天很多的大渠道,也因此使得很多小的CP没有竞争实力,推广上架无比艰难。
数量分析揭示了渠道的用户获取能力,再更加实际的来说,可以探测用户对渠道的粘性和忠诚度,这点对于渠道推广是有帮助的,因为如果一个渠道本身用户的成长体系不完善,不存在具有粘性的核心用户群,那么给予CP的用户资源也是有限的。
在这数量这一最粗放的力度上,我们将注重关注以下的指标:
以上几个指标,似乎是大家很常用的,但是仅仅到这个层级是远远不够的,因为我们并没有准确的去监控和识别用户的行为信息,仅仅是数量级的分析。实际上,对于某些大渠道来说,我们可以关注,玩家在活动或者更新周期,返回渠道的概率分析,这点也是值得的。
一般而言,我们可以通过安装后的注册转化率来了解渠道用户是否目标用户,当然这只是分析目标用户的第一个重要标准,同时这个转化率连带的会引发很多的实际的问题进行分析。
以上是第一个层级的分析策略,当然基于以上这些因素的分析,这里不再展开,可以根据自己的实际需要,有目的的进行实施就可以了。
质量:
玩家参与游戏情况
目前的移动互联网环境下,很多的游戏产品对于渠道推广投放,有很多是停留在数量这个层级上,稍微好一些的会关注渠道收入贡献情况,这点也是在渠道能够带来收入的前提下来进行的,不过我们似乎忽略了一些问题,那就是,在收入之前,连渠道用户的质量都不了解,就不能谈收入。因为这种情况下,会一直存在CAC〉LTV,即单用户的贡献远远小于用户获取成本。
因此,质量的分析,快速的优化,决定未来投放渠道的收入增长潜力。
以上四个指标作为质量控制的重要要素存在,帮助我们在渠道投放初期就要去了解渠道的投放质量,这点实际上相比较玉前一个层级,重点解决投放质量的问题。
平均日活跃用于了解该渠道的长期日活跃走势和平均水平,而一日玩家比例了解新增玩家中,只有在新增当天进行过游戏的玩家的比例,由于这点对于后续的留存率影响很大,所以必须要去了解留存率的水分有多少,真实的用户留存是什么水平。有关于这点在后续的文章中会继续与大家探讨。
刚才谈到了留存率,作为质量控制的一个节点,次日留存率水平在衡量渠道质量这方面还是有作用的,这是衡量渠道质量必须要考核的指标之一。
最后是首周付费比例,这点是辅助的分析渠道接下来营收能力的一个重要因素,因为渠道的用户资源最终还是要转为收入,不能完成这一步,不能完全判断一个渠道质量的价值。首周付费比例,决定了渠道推广后,用户的付费质量情况,这点可以和非推广时期的用户首周付费比例作一个对比分析。
收入
渠道收入能力情况
一如刚才所说的,渠道的用户资源,最终还是要转化为实在的收入,这是体现渠道价值的最佳方式,在这点上,我们重点覆盖以下的指标:
这几个指标的使用应该来说大家很熟悉,刚才也谈到了游戏产品的终极形态一定是要营收的,这是我们做游戏的目的,在这点的关注上,其实我们不必聚焦于详细的细分数据,只需要知道渠道究竟有多大的收入价值就可以了。当然在长期持续的过程中,我们要不断的监控和衡量渠道收益能力,做好用户获取成本和单用户收益之间的杠杆。
而以上所说的,实在宏观全局上,了解渠道与渠道之间的差异。实际上在渠道整体的策略上存在一个完整的闭环过程。
我们刚才的策略是构建了一个完整的基于渠道分析的数据体系,也就是做渠道分析该去看那些指标,以及如何作出分析。后续的其实还有详细的渠道分析,真正从具体的业务逻辑上实际分析把控,说的简单点,了解一些渠道本身的特点。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-30