
有效挽回流失用户的数据分析及策略:需多一点套路才能得人心
很多年前,互联网圈一直被人挂在嘴边的一句话:流量为王!虽然放在现在来看,不完全正确,but,流量还是最重要元素之一。如果你的用户都走光了,那还谈什么狗屁运营。所以,后来也就引出了“流失用户”这个名词,最本质目的是希望留住更多用户,最理想的结局不是共产主义,而是“陪你地久天长”。
作为一个电商平台偏数据的运营狗,我觉得还是挺幸运的,更了解数据,帮助提升运营效率。但是作为单身的运营狗来说,也是挺悲催的。不是因为没女票,而是因为,现在几乎把用户当作自己的另一半,ta来了,我开心,ta下单了,我更开心,反正一句话:你买得开心,就是对我最大的鼓励。但最近开始研究沉睡、流失用户之后,才发现,要想挽回这部分用户是有多艰难,就像男女间分分合合,最后彻底分手之后,很难再回头。故也有那么一点失恋的感觉。但是从另一个角度来看吧,老用户的量肯定比新用户量大,维护好老用户,延长用户生命周期,控制沉睡和流失用户比例,成本低且回报比拉新用户要高很多。
扯远了!正题:如何定义网站/app的用户流失率并对流失用户做分析?
在此想将个人一些想法沉淀下来,也希望能得到更多的分析思路。
有没有遇上这种情况:市场的同学拼了命在找各种付费/免费渠道拉新用户,而app的日活跃/月活跃用户(此处定义:每天/月独立的访问用户量)增长非常缓慢甚至有所下降。那么,就有可能是大批量的老用户“离你而去”了!每天的活跃用户只能靠费大力气拉进来的新用户和小部分老用户艰难支撑着,这个过程是异常的痛苦,因为这样你的活跃用户量永远没法提升。除非不断增加投放费用提升新用户量,但是这样是处于一个不健康的状态。必须正视和自检:站内对老用户的运营和维护是否存在很大的问题。
这时候就迫切需要数据去支持运营方向的自检和调整,而数据怎么入手来做,那就像追女仔一样,得一步步计划切入,切莫像个大傻叉有一步就到手的想法(--。我真不是老司机)。
你可以反问下自己:怎样才算是流失?就是说用什么条件去定义这个用户是否流失!是n个月没访问的用户定义为流失用户?是n个月没下单的用户定义为流失用户?还是n个月没访问且没下单的定义为流失用户?!这个定义,得根据不同网站、平台或app的实际情况来定义。这个确定以后,后面的所有工作都是根据这个来开展,直接影响到最后的结论。当然,也不用过于担心,毕竟这个定义随着往后的运营,还是需要调整的。
比方说一个内容导购性app,自然希望用户多回访多看内容,用户黏性的期望自然比一般的销售平台高。不妨,我们先按照我们的期望值去做一个定义:超过30天没访问app的用户定义为流失用户(我们会从后面的分析过程中验证这样定义是否正确)。
那么[第n月度流失率]的计算公式是:第n月流失率=该月流失的新激活用户量/该月的新激活用户总量(我们统计时间是在第n+2月)
有了第一步的“初次触电”,就有了往下的发展机会!
1、定义好什么是流失用户后,我和数据师在讨论,用什么模型来看才是最直观最能看出流失用户的行为的……(此处省略1万字),最后数据师给我的建议是用曲线图来建模--横坐标是天数(最后一次访问的日期距离激活日期的天数,可理解为:用户是在激活后第x天流失的),纵坐标是流失率(公式已在上面提及)。
2、横纵坐标定义好之后,然后将该月的激活用户,且超过30天没访问的用户数据划分出来,建立以下模型(图1图2,曲线图的变化,会根据实际情况呈现多种现象);
3、通过这个曲线图,总体可感知到,这批新用户的流失率达到50%,且在第30天左右达到一个稳定趋势,即证明了“30天内没访问”就认定为流失用户的这个定义还是比较合理的。同时,再细化来看,用户在激活后的两周内流失率是比较高的,如果熬过这两周,流失的用户也大大降低。那么,这也就引出了对新用户进来后两周内的运营引导工作是否还做得不够到位,或引进来的用户本身与app定位不太符合,需要在源头上调整呢?
有了这样一个数据基础,其实还可以继续深挖很多数据,比如:
1、流失用户的回访率(回访率=回访用户量/流失用户量*100%),即探究(在定义的时间段内没回访)流失用户之后是否会回来以及,回来的频次和时间点是什么。这个数据的目的是,帮助运营了解流失用户回访的时间点,在最佳的时间做用户挽回动作,提升回访率;
2、细分这批流失用户在流失之前对app的访问频次、在app的使用行为(如:是在哪个环节跳走后而流失),从而推断用户流失的原因。举个例子:用户A在流失前访问频次很高,每周会访问3-5次,但是几次从app跳走的页面都是支付页,那么极有可能支付环节出了大问题。可能是支付经常提示错误造成用户厌烦,可能是支付流程复杂让用户觉得困扰。不好的体验造成了用户A流失的主要原因;等等
话说,虽然用户走了,你“失恋了”,但这时候最不能缺的就是自信和勇气,及时去追啊!不然,算什么男人~
1、流失的用户量很大的话,如果流失的用户并没有流失任何联系方式,那很难直接触达这部分用户做调研。所以,这里也提醒下产品的同学,在设计用户刚激活app的时候,可考虑需要用户使用手机或邮箱注册,而不是使用微信微博联登,不过这个也是非常重要的用户体验问题,要根据不同情况去慎重考虑。接下来,只能对能够触达的那部分流失用户,做一对一或批量问卷调查,找到流失的主要几个原因;
2、下面根据用户的生命周期,大概说一下挽回的方向和策略,不过流失的用户普遍挽回率很低,需要更多耐心和方法:
a.根据用户的生命周期,可以将流失的用户先划分下类别:比如说根据购买频次和金额来细分–1次也没购买过的(可派发大额度优惠券、大促活动或超低价商品吸引回访成为首单新客),购买1-2次且客单价较低(可精准推送优惠专场或在这个客单水平的好货),购买3次及以上(可推送用户偏好的品牌或品类,额外增加会员专属优惠券等形式)。当然,这些只是一个思路供参考。
b.另外还要提一点,就算第一次挽回消息的推送很吸引,但用户可能也会各种因素没回来。广告有一个法则叫“八次曝光策略”,意思是说,品牌多次曝光,才能逐渐走进你的内心,加深印象,多次的展示在你面前,才更有可能让用户对品牌认知度提升。如果一次的挽回营销效果不好,可以尝试多次,但是针对不同价值的流失用户,需要控制不同的营销频次。
3、将用户划分之后,就看下营销工具了。常见的有:短信、email、push等。我个人觉得短信是最直接的,效果会比其他两种工具好。或者以一些“会员体验新版就有奖”名义,去吸引这批人重新下载app,如果新版产品有了更好的体验,或许这个用户就会重新对这个app有新的期待;顺便一提:个人了解到,市场上的流失用户回访率平均水平在5%-10%之间;
在做流失用户挽回的同时,必须也将流失用户调研、产品体验的优化工作放在第一位,不断反思为什么这么多用户流失,是哪个环节出了问题,是市场投放的渠道?是内容问题?还是产品体验方面?只有在各方的配合下,才能使挽回计划达到最好效果。
先码到这里吧,因为这部分还涉及关于生命周期、活动策划的配合等,留着下个主题再一起扯蛋吧。最后再再说一句:就算把妹不行,把把亲爱的用户们,还是得努力留几手!毕竟,套路得人心!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07