企业如何定位数据分析师?
网上曾经流传着这样一幅图片,数据分析师眼中的自己与他人眼中的数据分析师:
图片幽默的表现出了不同角度对数据分析师的理解和认知。我也曾听到不同的人讲过相似的观点:应该设计更好的系统产品来替代分析师的工作(或叫解放分析师)。在传统的理解和认知中,数据分析师的工作就是提取数据、设计报表,最多写写报告(那还是从报表中选取了一些图表放上来解读一下),从技术上看,这个环节简直是多余的,因为业务人员(如运营、产品、销售等)是可以自己解读数据完成业务分析报告的,如果能够解决取数、报表问题,那还需要数据分析师做什么呢?听上去很有道理,然而,如果我们追问一个问题:行军打仗时,参谋部存在的意义在哪儿呢?
现代战争中,情报的收集与展示都有自动化的机器完成,指挥官是决定作战计划的那个人,但参谋部依然存在。熟悉战争电影的同学可能想到:作战计划一般有很多套,最终被执行的只有一套,但每套计划的制定都需要经过严密的推演。参谋部的最主要的职责之一就是分析情报数据,经过军事推演后,制定各种可行的作战计划,指挥官则根据局势判断、取舍后确定最终的作战计划。(咱们在这儿就不讲抗日神剧中几个毫无准备的弓箭手轻松逃离准备充分且汉奸带路的鬼子中队包围圈的故事了,咱们只在人类的范畴内讨论此话题!)
参谋不直接带兵打仗,但要非常熟悉怎么打仗,参谋不直接决策,但要非常熟悉决策考量!
如果按照这样的思路,参照“参谋”的职责,我们试着理解数据分析师的核心职能是什么:
1) 用数据分析各种可能并给出分析结果(推演);
2) 根据数据分析情况建议各种策略(作战计划思路);
3) 监控策略/方案执行情况,给出总结及改进建议(战后总结);
依据这样的职责定位,总结一下数据分析师在工作中的基本职责,以电商企业为例:
1) 掌握数据分析技能,总结、发现数据规律;
2) 理解商业逻辑,依据数据规律,找出商业改进机会点,独立或合作制定业务改进计划;
3) 制定业务方案监控计划,及时给出总结及建议;
有“懂行”的同学说,别装13,不就是做报表写报告嘛!好吧,这个论断也不能算错,很多数据分析师的招聘JD中就清清楚楚写着:“根据公司需要设计并开发业务报表,完成业务分析报告!”怎么说呢,这个放到招聘JD中只能说是“概括性强”,公司内部岗位职责描述大可不必如此概况!
很明显,如果仅仅把这当作数据分析师的职责,90%以上的公司会讲:等报表数据弄准确了,数据部门能把需求及时完成了,各部门汇报数据不打架了,我再招数据分析师吧,现在离“用数据辅助决策”远着呢,花钱养着这些参谋大爷们……等等,游击队打仗就没有参谋了吗??好吧,确实没有,但有没有情报分析人员呢?兼职的也算啊。让项目管理的人员兼职做数据分析,为何不是数据分析的人员兼职去做项目管理呢?
互联网企业从诞生的第一天起,就需要有数据人员,区别只在于是其他人员兼职做数据分析,还是有专职数据分析人员。而数据工作的一类特性——数据工作贯穿企业几乎所有部门(尤其是互联网企业),决定了数据分析师的很多工作是直接汇报给CEO和管理层!理解了这个特性,对于很多招聘JD中出现要求“沟通强”“有项目管理经验佳”等就非常容易接受,因为在这些阶段,数据分析师就是要承担部分项目管理,营销策划,甚至产品设计的职能。这种情况在一个公司早期阶段或者公司新业务的早期阶段会大量出现,数据分析师面对这种现象必须有心理准备并积极学习应对。
将这些职能放到一起总结,数据分析之外,大概会出现如下几种要求:
1) 需求开发、需求梳理(早期,需求量过大);
2) 报表设计与开发(早期,缺少开发人员);
3) 数据仓库架构及数据流程设计(早期,缺少有经验的开发人员);
4) 报表口径统一,报表体系规划(早期没做好,中期混乱,无法依据数据有效决策);
5) 产品、市场、促销监控及改进建议推进(项目管理职能,推进很难,但如果能搞定,恭喜你,升职的日子不远了:));
6) 数据产品设计与开发(后期阶段,缺少专职数据产品经理);
好了,可以放到一起看看这些职责了,数据分析师眼中的自己,职责大概是:
1)利用各种分析工具,发现数据规律;
2)根据数据规律,给出商业改进建议;
3)监控商业改进执行情况,定期给出效果追踪。
好吧,这些我们都知道了,还是回到现实中来吧,大部分的企业,实际上对数据分析师的要求则可能是如下几种:
1) 报表类职责:
2) 分析类职责:
3) 其它类职责:
基于这些职责,数据分析师们则需要掌握几种技能,其中,不同的企业在不同的数据发展阶段,对工具的要求会有不同:
一个数据分析师在现代企业,尤其是互联网企业中的作用越来越重要,企业对数据分析师的要求也越来越高,本文只能从一个角度简单描述数据分析师的职责与企业定位之间的关系,如果有机会,后面希望能够再就企业需求多如何解决、企业数据工作的分工等话题一起探讨。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31