协方差:定义,属性_数据分析师
协方差分析是建立在方差分析和回归分析基础之上的一种统计分析方法。方差分析是从质量因子的角度探讨因素不同水平对实验指标影响的差异。一般说来,质量因子是可以人为控制的。回归分析是从数量因子的角度出发,通过建立回归方程来研究实验指标与一个(或几个)因子之间的数量关系。但大多数情况下,数量因子是不可以人为加以控制的。
协方差定义
在概率论和统计学中,协方差用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。
期望值分别为E(X) = μ 与 E(Y) = ν 的两个实数随机变量X与Y之间的协方差定义为:
COV(X,Y)=E[(X-E(X))(Y-E(Y))]
其中,E是期望值。它也可以表示为:
直观上来看,协方差表示的是两个变量总体误差的方差,这与只表示一个变量误差的方差不同。
如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。
如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。
如果X与Y是统计独立的,那么二者之间的协方差就是0。
但是,反过来并不成立。即如果X与Y的协方差为0,二者并不一定是统计独立的。
协方差cov(X,Y)的度量单位是X的协方差乘以Y的协方差。而取决于协方差的相关性,是一个衡量线性独立的无量纲的数。
协方差为0的两个随机变量称为是不相关的。
协方差属性
两个不同参数之间的方差就是协方差 若两个随机变量X和Y相互独立,则E[(X-E(X))(Y-E(Y))]=0,因而若上述数学期望不为零,则X和Y必不是相互独立的,亦即它们之间存在着一定的关系。
定义
E[(X-E(X))(Y-E(Y))]称为随机变量X和Y的协方差,记作COV(X,Y),即COV(X,Y)=E[(X-E(X))(Y-E(Y))]。
协方差与方差之间有如下关系:
D(X+Y)=D(X)+D(Y)+2COV(X,Y)
D(X-Y)=D(X)+D(Y)-2COV(X,Y)
协方差与期望值有如下关系:
COV(X,Y)=E(XY)-E(X)E(Y)。
协方差的性质:
(1)COV(X,Y)=COV(Y,X);
(2)COV(aX,bY)=abCOV(X,Y),(a,b是常数);
(3)COV(X1+X2,Y)=COV(X1,Y)+COV(X2,Y)。
由协方差定义,可以看出COV(X,X)=D(X),COV(Y,Y)=D(Y)。
协方差作为描述X和Y相关程度的量,在同一物理量纲之下有一定的作用,但同样的两个量采用不同的量纲使它们的协方差在数值上表现出很大的差异。为此引入如下概念:
定义
ρXY=COV(X,Y)/√D(X)√D(Y),称为随机变量X和Y的相关系数。
定义
若ρXY=0,则称X与Y不相关。
即ρXY=0的充分必要条件是COV(X,Y)=0,亦即不相关和协方差为零是等价的。
定理
设ρXY是随机变量X和Y的相关系数,则有
(1)∣ρXY∣≤1;
(2)∣ρXY∣=1充分必要条件为P{Y=aX+b}=1,(a,b为常数,a≠0)
定义
设X和Y是随机变量,若E(X^k),k=1,2,...存在,则称它为X的k阶原点矩,简称k阶矩。
若E{[X-E(X)]^k},k=1,2,...存在,则称它为X的k阶中心矩。
若E(X^kY^l),k、l=1,2,...存在,则称它为X和Y的k+l阶混合原点矩。
若E{[X-E(X)]^k[Y-E(Y)]^l},k、l=1,2,...存在,则称它为X和Y的k+l阶混合中心矩。
显然,X的数学期望E(X)是X的一阶原点矩,方差D(X)是X的二阶中心矩,协方差COV(X,Y)是X和Y的二阶混合中心矩。CDA数据分析师培训官网
数据分析咨询请扫描二维码
需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20