讨论:因子分析非正定矩阵是怎么回事儿
在最近的工作中需要用spss做因子分析,但是在具体操作过程中遇到了头疼的“非正定矩阵的问题”,困扰了很久。看了论 坛上很多网友的讨论和解决办法,加上自己的一些摸索,也最终找到了问题的原因和解决办法,现在写出来与大家分享,希望对有同样困扰的朋友一些启示,当然其 中一定有不对的地方,欢迎大家一起讨论。
一、案例介绍
某运营商无线增值业务全国各省某一个月内运营情况,变量35个,样本31个(全国31个省),希望通过因子分析对各省综合实力进行排序。
二、问题描述
通过spss的因子分析对原始变量进行降维处理时,SPSS提示相关系数矩阵为“非正定矩阵”,无法给出KMO值,但是SPSS仍然给出了后续因子分析结果。
三、疑问
(1)什么是正定矩阵?
(2)因子分析是否一定要求变量的相关系数矩阵为正定矩阵?
(3)非正定矩阵的存在对因子分析结果有何影响?
(4)如何修正使得变成正定矩阵?
四、解决办法
通过在论坛上查阅人相关问题,发现其他网友总结出现这种情况的原因主要集中在两点:
(1)样本量太少,而指标过多。
(2)某些变量间相关性太强。
而解决方案分别要求增加样本,或者剔除某些显著强相关的变量。
但是在我的这个例子里面无法增加样本,因此只能从变量的相关性上考虑,看是不是存在一些和其他变量高度相关的变量。通过查看因子分析结果中的相关系数矩阵,的确发现大部分变量之间都存在高度相关性,而且相关系数在0.9以上。
但是现在问题来了,那是不是应该直接删除高度相关的变量?该删 除哪些变量?按照我的情况估计很多变量都要剔除了,那对于分析结果就会产生很大的影响。
为了找出具体是哪些变量导致问题的出现,我用了一个比较笨的办法:逐一淘汰法。刚开始时不把所有变量都用来做因子分析,只选取一小部分,例如我先选取了10个变量做分析,发现spss没有再提示“非正定矩阵”而是正常的输出了KMO检验值,而且顺利完成了因子分析结果;然后下一步我再逐个添加其他变量进行测试,当发现添加某个变量spss提示“非正定矩阵”时,就记下这个变量,然后再换成下一个变量继续测试,直到把所有变量测试完。通过这样的测试,我终于找到让spss认为“非正定矩阵”的原因:一共有5个变量,只要不纳入这5个变量进行分析,spss就能正常的进行因子分析。
找到原因后,我本来想直接删除掉这5个变量好了,但是我查看了一下spss因子分析的输出结果,发现了为什么是这5个变量的原因,如下图:
上图的截图是“解释的总方差”显示所有变量的相关系数矩阵的所有特征值,大家可以看到在用红色方框标注的5个特征值,他们的数值的数量级都是10的负16次方、17次方、18次方,甚至出现了负值,几乎可以认为就是零了,远远小于其他特征值,根据之前的逐一测试法确认,这5个特征值是与之前发现的那5个变量是对应的,我想这就应该是为什么是这5个变量导致出现非正定矩阵的原因吧。
那进一步思考,特征值过小或者为负值说明了什么呢,根据正定矩阵的判定,正定矩阵的充分必要条件是:特征值>0,所有出现负的特征值就肯定会出现“非正定矩阵”的原因,但就靠这点似乎还不够,因为有些特征值是大于0的,只是非常非常小而已。我推测(仅仅是我推测),因为我们在做主成分分析的时候,每个主成分的方差就等于对于特征值,特征值太小意味着主成分的方差太小,方差太小意味着包含变量的 信息量太少,而我们在做因子分析时往往也是用主成分法来抽取公因子,所以特征值太小可能也无法满足正定矩阵的条件,当然这是我的推测。
五、总结
根据整个过程,我总结了一下几点:
(1)出现非正定矩阵的情况,并不一定都是样本太少(本例中样本才31,变量有35个)。
(2)剔除变量的时候,可以利用逐一淘汰法来发现问题变量,再考虑是否要删除。
(3)非正定矩阵似乎对因子分析结果并无太多影响,因为我们往往只抽取了部分公因子(累计方差贡献率>85%),特征值过小意味着方差贡献率也会很小,往往不会被选作公因子,所以对结果影响不大,这也是为什么spss仅仅是提示,仍然会输出因子分析结果的原因。
好了,这个是我工作中碰到的一个实际例子,之前一直困扰了我很久,现在写出来与大家分享,希望能对有同样问题的朋友一个启发,当然里面一定有不对的地方,希望大家多多指正。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31