
Graveyard模型的spss操作
昨天一位朋友问我Graveyard模型如何操作,我在几年前曾做过这个模型,现在有些遗忘了,先说说Graveyard模型是做什么的?为什么要用Graveyard模型 ?
1、 二维分析方法
先说说一个很好的市场研究方法,那就是二维分析方法,简单的讲就是X和Y的散点图,在市场分析和数据挖掘的过程中大多是有这种方法进入主题进行深度分析的,当然分析或者挖掘的入口大多数是数据的分布;
二维分析方法的难点就在于如何设定X,Y,,也就是X代表什么意思,Y代表什么意思;如何划分区域(一般是mean,但一定要考虑数据的分布,以防木桶原理影响决策)
2、Graveyard模型
对于提示前品牌知名度和提示后品牌知名度之间的内在关系,可以用Graveyard模型描述。它是个两维图,以提示后知名度为 X 轴,提示前知名度为 Y 轴。根据每一品牌的提示前后知名度在这个两维图上描点,每点代表一个品牌。对所有品牌的提示前后知名度进行回归分析,作出回归直线(或曲线)。这条回归直线(或曲线)将品牌分为四种类型:
(1)正常(Normal)品牌,位于回归线周围,提示前后知名度的关系与市场上的平均水平比较一致。
(2)衰退(Graveyard)品牌,位于回归线右下方的品牌,其提示前知名度相对于提示后知名度太低,显现出该品牌被消费者淡忘的趋势。
(3)利基(Niche)品牌,位于回归线左上方的品牌,其提示前知名度相对于提示后知名度较高,这类品牌其品牌认知率虽然相对不高,但其品牌回忆率较高,消费者对其忠诚度较高。
(4)强势品牌,位于回归线右上方的品牌,其提示前后知名度均很高,消费者对其忠诚度甚高,这些品牌大多是市场上的强势品牌。
3、回归线是那条
大多数的描述都是围绕回归线进行的,那么如何才能更好的模拟这条回归线呢?
统计角度:R、F检验值和T检验值
R越接近1,表明方程中X对Y的解释能力越强
F检验是通过方差分析表输出的,通过显著性水平(significant level)检验回归方程的线性关系是否显著,spss默认的是0.05,也就是小于0.05均有意义;
实际角度:可以根据自己收集数据的角度和分析的侧重点进行调整拟合曲线;
4、spss如何实现以上的过程?
step1:在回归分析中找曲线估计,如下图;
step2:选择提示前和提示后的数据分别做X和Y,选择拟合所有的曲线
接下来就是OK,之后大家根据自己的实际问题,拟合出更贴近真实的回归线吧
spss跑出来的图,大家可以复制到PPT中选择图点右键取消组合,再美化一下就OK!
5、模型展示:
6、此图解读,此图来自@Celia聪利(新浪微博)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05