如何做好数据分析的第一步,数据埋点呢
做产品的同学在产品上线后经常离不开一个词,数据分析。那么要如何进行数据分析呢?不妨先问自己这么几个问题。
你要分析什么问题?是找问题还是验证?关于这些问题你需要哪些数据?这些数据从哪里来?
要怎么解决这些问题呢?答案是数据埋点。首先通过产品定位及目标来确定自己需要哪些数据,其次通过在产品各个流程环节中设置数据埋点,最后,当用户使用产品时,后台就能源源不断地接收到数据了。
那么,问题又来了。如何做好数据分析的第一步,数据埋点呢?还是从三个问题来回答
1.数据埋点是什么?
初级的数据埋点:在产品流程关键部位植相关统计代码,用来追踪每次用户的行为,统计关键流程的使用程度。
中级的数据埋点:在产品中植入多段代码追踪用户连续行为,建立用户模型来具体化用户在使用产品中的操作行为。
高级的数据埋点:与研发及数据分析师团队合作,通过数据埋点还原出用户画像及用户行为,建立数据分析后台,通过数据分析、优化产品。
2.为什么要做数据埋点?
一个简单的逻辑:你不做数据埋点,你就做不了数据分析。你不做数据分析,你就会不知道产品上线情况。你不知道产品上线情况,你产品就会做差。你产品做差,你的业绩就会不好。你业绩不好你就会被辞,你被辞就会没钱。你没钱就会去睡马路。你睡马路你就可能会被车撞,你被车撞就会…
所以为了不被车撞,一定要做好数据埋点!
3.怎么做好数据埋点?
(1)数据埋点的内容
数据埋点可以分为产品内部埋点和市场埋点,内部埋点通常分析用户使用产品的行为及流程,提升用户体验。市场埋点分析该产品在市场上的表现及用户使用场景,如产品在不同市场和地域的下载量,不同地域人群使用时间等等。
产品流程通常分为主干流程和分支流程,所以相应的数据埋点可以分为主干埋点和分支埋点,数据埋点通常不会一步搞定,在产品的第一次上线时通常会埋以下几个点:PC&Web端会统计产品的PV/UV,注册量,主要流程页面之间的转化率、日活人数等等。而移动端还要统计产品在Appstore,各大安卓市场的下载量。
第二次埋点会根据产品目标及上线后的问题进行分析。比如,当你发现产品首页的UV很高,注册量却非常低,你就需要分析出用户在首页的行为,如30%的用户退出了产品,60%的用户进入了注册页,但只有1%的用户注册了该产品。这也就意味着,注册流程可能出现了问题,需要进一步细化注册各个流程,增加数据埋点,分析各个流程之间的转化率,找到产品出现的问题并解决。
具体到自己的产品,怎么数据埋点,就需要根据自己产品的任务流及产品目标来设计。这是一个由粗到细,优化迭代的过程。
(2)分析方法
任务流程分析法:根据产品设计的任务流,在任务流开始和结束处埋点,分析用户处理任务的情况。
页面转化分析法:统计相关页面的转化率及页面元素点击率,分析用户行为。
情景分析法:列出各种用户使用场景,自己或多人体验不同场景下产品的使用流程,寻找依据设立数据埋点,通过数据反馈验证用户行为。
(3)数据埋点的方式
目前主流的数据埋点方式分为两种:
第一种:自己公司研发在产品中注入代码统计,并搭建起相应的后台查询。第二种:第三方统计工具等。
最后,还是要说,数据埋点是产品数据分析的基础,也是个循序渐进的过程。基础的数据分析并不难,让数据来驱动产品迭代。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13