数据分析必须想清楚的两个概念:指标和维度
指标与维度是数据分析中最常用到的术语,它们是非常基础的,但是又很重要,经常有朋友没有搞清楚它们之间的关系,只有掌握理解了,我们的数据分析工作开展就就容易多了。现在就来说说指标与维度的那些事。
1、指标
指标,用于衡量事物发展程度的单位或方法,它还有个IT上常用的名字,也就是度量。例如:人口数、GDP、收入、用户数、利润率、留存率、覆盖率等。很多公司都有自己的KPI指标体系,就是通过几个关键指标来衡量公司业务运营情况的好坏。
指标需要经过加和、平均等汇总计算方式得到,并且是需要在一定的前提条件进行汇总计算,如时间、地点、范围,也就是我们常说的统计口径与范围。
指标可以分为绝对数指标和相对数指标,绝对数指标反映的是规模大小的指标,如人口数、GDP、收入、用户数,而相对数指标主要用来反映质量好坏的指标,如利润率、留存率、覆盖率等。我们分析一个事物发展程度就可以从数量跟质量两个角度入手分析,以全面衡量事物发展程度。
刚才说过,指标用于衡量事物发展程度,那这个程度是好还是坏,这就需要通过不同维度来对比,才能知道是好还是坏。
2、维度
维度:是事物或现象的某种特征,如性别、地区、时间等都是维度。其中时间是一种常用、特殊的维度,通过时间前后的对比,就可以知道事物的发展是好了还是坏了,如用户数环比上月增长10%、同比去年同期增长20%,这就是时间上的对比,也称为纵比;
另一个比较就是横比,如不同国家人口数、GDP的比较,不同省份收入、用户数的比较、不同公司、不同部门之间的比较,这些都是同级单位之间的比较,简称横比;
维度可以分为定性维度跟定量维度,也就是根据数据类型来划分,数据类型为字符型(文本型)数据,就是定性维度,如地区、性别都是定性维度;数据类型为数值型数据的,就为定量维度,如收入、年龄、消费等,一般我们对定量维度需要做数值分组处理,也就是数值型数据离散化,这样做的目的是为了使规律更加明显,因为分组越细,规律就越不明显,最后细到成最原始的流水数据,那就无规律可循。
最后强调一点,只有通过事物发展的数量、质量两大方面,从横比、纵比角度进行全方位的比较,我们才能够全面的了解事物发展的好坏。
进一步拓展思考,我理解为指标拆分和维度对比。
其实在实际产品数据分析的过程中也可参照以上思想。
通过大量的数据分析软件工具应用可以发现,主要包括以下内容:
整体情况的分析和汇总:全局数据的概况、变化趋势、占比等
多个维度的分析:如果是日志数据,已经存在多个数据项,以某一个数据项作为主关键词汇总分析,同比、环比变化,占总数的变化。如果没有日志数据,则需要想清楚解决这个问题原因是什么?需要采集哪些数据项?
重要场景问题的分析:根据分析的重要问题、用户关心的问题进行分析
软硬件性能管理、告警管理、报表管理、基础参数配置和用户管理等等
在多维度分析、告警、报表,数据图表可视化设计呈现方面也存在许多共性,总结如下:
数据的呈现方式是表格还是图表?若是时间范围,时间统计粒度是多少?
表格需要呈现哪些数据?数据的单位?保留几位小数?数据计算的方法?排序依据?
图表采用哪一种?呈现的范围是多少?
常见的数据项操作:新增、删除、修改、查询
新增哪些是必填数据项?校验重复性和有效性?
删除是否需要提醒?是否具有权限删除?
修改可修改的数据项有哪些?修改后是否要进行校验有效性和重复项?是否有修改的权限?
查询是精准查询还是模糊查询?是单一查询还是支持批量查询?批量查询输入方式的讲究?查询的内容输入什么是否支持大小写 空格等?数据区间的查询是自定义还是给出范围划分?
人们总认为与大数据分析沾点边的技术都要花大价钱才能得到。但事实上,大数据分析的思想才是最贵的,技术可以实现数据批量清洗,处理,呈现地更快、更美。但却不知道要哪些数据算有效,哪些数据才是重点需要分析得出有价值的信息。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-30