数据分析人员常犯的五大错误以及预防方法
你知道吗?每过去1分钟,Instagram上就多了1736111个赞,Snapchat上就多了284722个照片/视频分享,Tinder上就多了590278次“翻牌子”。移动应用和手机游戏的飞速发展催生了巨量级的数据资料,这些数据生动地刻画了用户的使用轨迹和行为习惯,价值难以估量。
于是,针对这些数据开展专业研究工作的数据分析人员成了香饽饽,他们的分析结论有可能对一个产品的发展走向带来巨大的影响。而作为数据分析人员,要在大量的数据中找到有意义、有价值的内容并不是易事。
过去,数据分析师绝大多数来自统计学或编程学的人才。随着越来越多企业发现,数据分析人员应该同时具备数据分析能力以及商业运作能力,这种情况在近几年才有所转变。
对数据的解读能力、问“正确”问题的能力以及解答问题时的灵活性,都是衡量一名数据分析人员是否足够称职的关键。
数据分析师Pavel Trejbal持有认知信息学硕士学位,就职于AppAgent(为移动游戏工作室和创业团队提供营销服务的一家企业)。他的学术领域涉及到许多学科,包括经济教育学、心理学、脑科学、语言学、人工智能以及哲学。Pavel表示:“我不敢妄言自己是这些领域的专家,不过对这些领域的广泛认识的确帮助我在面对难题时以出其不意的角度找到解决方法。”
在数字的海洋里翻滚了六年,Pavel有过不少成功的表现,也有过很糟糕的分析结论。在这里,他给我们分享了数据分析人员最常犯的五个错误,以及对应的预防方法/建议。
错误一:执着于完美的算法
明明有现成的、简单的但非常适用的方案不采用,偏偏把时间花在对数据算法的钻牛角尖上,这是数据分析人员所犯的最常见的错误。与其花上一整个月的时间交出一份无比详尽的长文报告,不如在短时间内交出一份简洁的数据分析。也许后者在一些细枝末节上不够精确,但具有直接参考价值的结论才是你的上级亟需的。直击要点才是最有效率的做法,在商业战争里时间太重要了!
错误二:迷信完美通用的方法论
千万不要这样做。每一个业务,每一次分析,都是有区别的。完美通用的方法论听上去很美好,但具体的方案必须由自己思考得出。对待每次分析,都应该是面对全新挑战的姿态,开放思考、亲自分析,不能依赖过往的类似案例。
错误三:只看数据,忽视其他分析依据
如果在数据分析过程当中发现一些特别突出的数据变化,记住:三人行,必有我师焉。在定论出来之前,主动找到产品运营、社区运营或者游戏策划商量,毕竟这些同事才是与用户有最直接接触、最理解产品的人。异样的数据变化,经常来自于不科学的解读方法或者数据采集过程中的技术错误。
错误四:清理数据的方式不科学
清理数据在数据分析工作里是个比较无趣的工序,而且往往要花上大部分的时间,但这个工序是绝对不能忽视的。在清理数据的过程当中,你会了解到哪些地方分析错了或者遗漏了、哪些地方限制了你的解读能力。如果跳过这个工序,分析结果很可能不靠谱,甚至得出与客观情况完全相反的结论。
错误五:无法分辨不同的工具和指标
因为总会存在不同的技术设定或者指标定义,所以每一款数据分析工具都是独一无二的。使用这些工具之前,一定要清楚区别在哪里。最近我们就有用Google Analytics采样分析里的转化率和收入数据来进行A/B测试。刚开始,A变量在两项指标中都比B变量有更好的表现,但我们没有直接采用这个结论。我们把原始数据下载下来进行手动的分析。这次的分析结果跟之前完全相反,A变量在两项指标中都比B变量差很多。
离开座位,多多走动
Pavel确信,身为数据分析人员,无论如何都不应该守在自己的“象牙塔”里。相反,数据分析人员应该更多参与到公司的日常业务里,比如出席运营营销体系、产品策划团队的会议。如此,数据分析人员才能更好地理解策划人员及决策者的需求,接收更多跟产品直接相关的信息,并且适时提出数据分析提高产品表现的方案。除此之外,决策者们也更能理解到数据分析的价值,并且激励整个团队的钻研精神。
数据分析是非常重要的一环,虽然很复杂,但掌握一定逻辑和方法后,应该说不会有太多难处。而且,这不有我们作为前车之鉴吗?请不要再犯这些错误才好。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何构建数据分析整体框架? 要让数据分析发挥其最大效能,建立一个清晰、完善的整体框架至关重要。今天,就让我们一同深入探讨 ...
2024-12-27AI来了,数分人也可以很省力,今天给大家介绍7个AI+数据分析工具,建议收藏。 01酷表 EXCEL 网址:https://chatexcel.com/ 这是 ...
2024-12-26一个好的数据分析模型不仅能使分析具备条理性和逻辑性,而且还更具备结构化和体系化,并保证分析结果的有效性和准确性。好的数据 ...
2024-12-26当下,AI 的发展堪称狂飙猛进。从 ChatGPT 横空出世到各种大语言模型(LLM)接连上线,似乎每个人的朋友圈都在讨论 AI 会不会“ ...
2024-12-26数据分析师这个职业已经成为了职场中的“香饽饽”,无论是互联网公司还是传统行业,都离不开数据支持。想成为一名优秀的数据分析 ...
2024-12-26在数据驱动决策成为商业常态的今天,数据分析师这一职业正迎来前所未有的机遇与挑战。很多希望转行或初入职场的人士不禁询问:数 ...
2024-12-25数据分析师,这一近年来炙手可热的职业,吸引了大量求职者的注意。凭借在大数据时代中的关键作用,数据分析师不仅需要具备处理数 ...
2024-12-25在当今数字化变革的浪潮中,数据分析师这一职业正迎来前所未有的发展机遇。回想我自己初入数据分析行业时,那种既兴奋又略显谨慎 ...
2024-12-25在当今信息爆炸的时代,数据已经像空气一样无处不在,而数据分析则是解锁这些信息宝藏的钥匙。数据分析的过程就像是一次探险,从 ...
2024-12-25在职场上,拍脑袋做决策的时代早已过去。数据分析正在成为每个职场人的核心竞争力,不仅能帮你找到问题,还能提供解决方案,提升 ...
2024-12-24Excel是数据分析的重要工具,强大的内置功能使其成为许多分析师的首选。在日常工作中,启用Excel的数据分析工具库能够显著提升数 ...
2024-12-23在当今信息爆炸的时代,数据分析师如同一位现代社会的侦探,肩负着从海量数据中提炼出有价值信息的重任。在这个过程中,掌握一系 ...
2024-12-23在现代的职场中,制作吸引人的PPT已经成为展示信息的重要手段,而其中数据对比的有效呈现尤为关键。为了让数据在幻灯片上不仅准 ...
2024-12-23在信息泛滥的现代社会,数据分析师已成为企业决策过程中不可或缺的角色。他们的任务是从海量数据中提取有价值的洞察,帮助组织制 ...
2024-12-23在数据驱动时代,数据分析已成为各行各业的必需技能。无论是提升个人能力还是推动职业发展,选择一条适合自己的学习路线至关重要 ...
2024-12-23在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19