数据平台维度模型设计十个技巧
了解过数据仓库历史的人都知道Bill Inmon、 Ralph Kimball。 Bill Inmon 代表作《Building the Data WareHouse》 , Ralph Kimball代表作为 《The Data Warehouse Toolkit》、《The data Warehouse lifecycle》。两位大师对数据模型都分别作了深入阐述,个人理解的数据模型是数据平台的灵魂。数据模型设计好了对数据应用、数据分析支持是非常有帮助的。尤其 kimball 提出的维度模型 ,围绕业务模型能够直观的表达业务数据关系。
关于数据模型概念不多讲,本文与大家分享多维数据模型设计的十个技巧。
技巧一:维度表中应该包含最细的颗粒度。
通常在数据平台做开发的同学,“特麽”经常抱怨 “ 需求怎么又变了,这个需求能不能不要来回的改“,数据建设中会遇到非常不确定性需求,不可预测筛选与汇总。
尤其是在互联网做数据化运营,绝大部分需求几个汇总类指标是无法满足需求,很多时候会沉浸到比较明细、更深层次的细节信息。当然汇总指标是能够概括一些概述数据细节,但只有细节数据才能回答各种不停的业务上数据追问。
技巧二: 围绕业务流程来构建维度。
数据是真实的反应业务活动与成果的,业务流程在不同的阶段所产生数据项也是不一样的。比如说一个用户从寻找App、下载、安装、启动、再启动这个流程,用户在淘宝购物、寻找浏览物品、放入购物车、跳转收银台、支付、完成。
这两个流程背后代表某个业务事件活动,在不同的环节产生的数据项是不同的,如果将流程不同阶段的指标沉淀下来变为可度量的关键指标,如果将这些关键指标根据关系合并与设计到事实表中,就变为支撑业务人员分析、探索业务的细节数据。
为了能够从业务流程上的多维度来探索数据,所涉及到的很多维度最好是业务流程来做设计,比如上图交易现相关,从订单的来源,所属产品、到支付阶段的资金来源,从业务流程上来看,还可以扩展出更多的维度、与度量值。
在不同的业务环节,业务人员都会“很任性”的需求不同指标,但是在需求中往往是与业务流程有很大关系的。
技巧三:尽量保证每张事实表与时间维度有关联
在原则二中描述那两个案例业务永远是与日期有关系的,不管是月、日、年、还是分、秒,财务年、自定义时间事件段等。
每个事实表至少有一个外键能够与日期维度表相连,时间维度能才能反映出存量与流量,才能分析某一时刻、某一时间段的业务流程变化情况。
技巧四:同一张事实表的指标对应维度层级必须一致
一般的事实表有四种类型,粒度事实、周期性快照事实、聚合快照事实、非事实事实表,不管它们的粒度类型,事实表中的每个度量值在颗粒度上必须保持与维度的颗粒度是一致的,否则就等着崩溃吧。
例如原则二给出的案例,要分析一个用户订单支付业务。如果对这个业务进行设计分析模型时,把产品维度粒度定义为产品,但是在度量值金额却是按照不同产品分类做聚合的,那就有意思了。我暂时也没回忆起类似的场景会在什么情况犯错。
在多个维度表的值可以赋给单个事实事务时,事实表和维度表之间通常是多对多关系,比如为了计算写书的作者分成,一本书可能有多个作者, 一个作者可能出版了多本书,这个案例下就是多对多的关系。要考虑到可以计算出每个作者的的分成,中间可以增加一个桥接表。
综上所述,
在这种情况下多个值的维度与事实表直连可以采用桥接表来处理。
技巧六:经常发生变化的维度处理
在设计维度上很多时候都是扁平化处理,业务中普遍的维度关系是一对一的关系,比如例如客户Simmy将自己的地址由原先的Addr1改为Addr2。这时我们需要将这个记录了客户Simmy的记录中的有效截止日期改为现在,并重新添加一条有效截止日期为现在的和一个新的版本号且Address为Addr2的记录。
但是也经常存在一对多的关系,比如大家的购物邮寄地址、个人电话号码等在现实生活中有变化的处理。这种情况可能存在一对多的关系,假如一张维表存在上百万的维度且汇总信息经常在变化,那得注意做缓慢变化、或快速变化处理了。
技巧七:让维度表使用代理键
英文叫SurrogateKey,翻译过来又叫代理键,在建模中通过一些毫无意义键值来代替一些业务键值,有利于维度统一整合。
技巧八:进行一致性维度的处理
一致性维度,又叫统一维度。对于构建企业级数据平台数据模型具有关键的意义,通过在数据转换处理环节一次性处理后,在构建不同数据集市、不同数据层时可以反复被使用。
统一维度在构建多维模型时,可以很便捷能把多种不同类型业务指标进行关联,让使用用户在不同业务间切换分析、还能减少维护工作。
比如数据描述经常不一致性如,同名异义、同物异名,还有口径多样化、编码不统一、命名不统一等。还能处理一些未知、不知道名字、日期待定等一些含
糊的分类。
而然,在实施统一维度时最大的障碍是需要不同的业务部门、IT部门对每个维度属性上达成一致,那就涉及到数据管理、数据治理的范畴了。比如含义相同但名称不同业务术语等。
技巧九:分析功能标签化标签以及过滤器等信息可以当做维度来保存。
其实这也不是什么原则,个人更倾向于归类到技巧中。比如在构建分析型数据产品时,有些功能性的标签、查询类的代码或分类完全可以维度化。
例如某些下拉菜单中筛选标签以及过滤器阈值等、用户的特定群体探索、产品的相关联分析等,都可以维度化并做预处理。
这样做的好处是速度快,把部分分析结果数据做预处理,查询中需要聚合部分变为过滤查询,这样会提高分析查询效率的。
技巧十:大维度的退化处理
所谓的大维度,是指维度数据量特别大,比如现在互联网的URL维度可能几十万上百万,还有客户,产品等等。一个大的企业客户维度往往有上百万记录,每条记录又有上百个字段。而大的个人客户维度则会超过千万条记录,这些个人客户维度有时也会有十多个字段,但大多数时候比较少见的维度也只有不多的几个属性。
这些维度的处理往往采用把大属性转为小属性、退化处理,增加更多的不同分类字段等特殊处理。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16