
用降维方法解读数据分析
随着互联网技术的不断发展,数据呈现出规模大、维度高、结构复杂等特性,人们收集和获得数据的能力也逐渐增强。如何充分利用海量数据、挖掘其中有价值的知识和内容以指导实际生产是科研人员、工程技术人员及各管理层领导所研究及关注的焦点。数据降维能够加快算法执行的速度,同时也能提高分析模型的性能,降低数据的复杂度,缓解“信息丰富、知识贫乏”的现状。
1. 主成分分析
主成分分析(PCA:Principal Component Analysis)是最常用的线性降维方法,它是通过正交变换将高维的数据映射到低维的空间中,并期望在所投影的维度上达到数据方差最大的效果。主成分分析在降维时只需要保留前m(m
2. 反向特征消除
在这个方法中,每进行一次降维操作,都采用n-1个特征对分类器训练n次,得到新的 n 个分类器。将新分类器中错分率变化最小的分类器所用的 n-1 维特征作为降维后的特征集。并且不断地对该过程进行迭代,最终便可得到降维后的结果。
3.前向特征构造
前向特征构建与反向特征消除是互逆过程。前向特征从1个特征开始构造,每次进行训练时,都会添加一个让分类器性能幅度提升最大的特征。由于前向特征构造和反向特征消除操作起来较为耗时,因此它们通常用于输入维数相对较低的数据集。
4. 缺失值比率
当一组数据存在太多缺失值导致有用的信息较少时,可以用到缺失值比率这一方法来进行降维,可以把数据列中缺失值大于某个阈值(可自行设定)的列去掉。阈值越高,降维方法则会更便捷,降维越少。
5. 高相关滤波
高相关滤波的原理是:当两列数据的变化趋势相近时,它们所包含的信息也相似。这样一来,相似列中的其中一列便可满足机器学习模型。数值列之间的相似性可以通过计算相关系数来表示,名词列的相关系数可以通过计算皮尔逊卡方值来表示。相关系数大于某个阈值的两列只保留一列。由于其相关系数对范围敏感,所以同主成分分析类似,在计算之前也需要对数据进行归一化处理。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10