为什么机器学习真的可以学到东西
开始跟《机器学习基石》这门课,相对于Stanford那门课,这门明显难度大很多,我跟到第10个Lecture,才刚刚讲到Logistic Regression。前面费了很大力气在讲机器什么时候可以学习,以及证明为什么能学习。
此文主要是基于《机器学习基石》的学习笔记。Topic是为什么机器可以学习?
机器学习最开始也是最终的目的是获得一个target function,喂进去数据能直接得到正确结论的函数。为了得到这个函数,我们需要一大堆的训练数据。然后通过一个好的机器学习算法,从一大堆可能的function(也就是H)中挑选一个比较好的function(也就是g),这个g和target function长得越像越好。
大家有没有想过,为什么这样就能学到东西。我们的算法只是在训练数据上跑,从训练数据跑出来的g,我们怎么能确定它也能在测试数据上跑的很好呢?这个就是问题的关键。其实接下来内容主要就是论证这个问题。
先来考虑一个简单的问题。比如说我们现在有一个黑罐子,里面有很多弹珠,只有两种颜色,黄的和绿的。好现在问你,你怎么能知道黄色弹珠大概有多少颗?
大家肯定都会说抽样。没错,我们抽出10个弹珠,很容易能知道黄色弹珠在sample中的比例。但是这个比例真的能代表罐子中的比例吗?也许能,也许不能。而且能的记录会随着我们sample数目的增大而增大。但是也有可能你抓出一把全绿。但这种情况发生的记录很小。这里我们有一个定理保证这种偏差发生的记录很小。
Hoeffding's inequality可以保证偏差很大发生的几率很小,并且随着N的增大很减小。公式如下,v代表sample中黄色弹珠的比例,μ表示罐子中黄色弹珠的比例。ϵ也就是偏差。
现在我们称v为Ein,μ为Eout,现在我们已经证明了Ein和Eout不会差的太远,更重要的事情是保重Ein越小越好,这就需要一个好的算法。
还记得上面的学习流程吗,我们的算法是从很多个h中去挑选一个Ein最小的h让它成为g。但是这里会有坏事情发生。
所谓的坏事情就是bad sample,就是说我们抽出了十个全是绿的弹珠。现在有一个好的h称之为h1,和坏的h叫h2,h1对于这个bad sample的表现当然是糟糕的,而恰好h2表现很好,那h2就被选成g了。
当出现坏事的时候,我们学习就会困难,可以直接说不能学习。所以这个坏事出现的概率是多少呢?把所有h中发生坏事的几率加起来。
从上图的式子中可以看到,坏事发生的几率和M有关。M也就是h的个数。
从现在的条件来看,如果M很大甚至无线的话那么Learning是不可行的。
真实的情况是M一般不会很大,请再仔细看看上一张图的推导,M是通过把所有的h坏事发生的概率加起来的,但是其实这些h不是互相独立的。所以这些h是有重复的,如下图。
比如说,我们想学习的target function是一条把x1分类成正负的线。现在h就有无数个,因为任意一条线都能分类,但是实际有意义的只有两种,分成正的和负的。
如果是两个点的话,实际有效的h就有4种,但是3个点就有可能不到8种了,因为会出现三点共线的情况。4个点的话按理说有16种,但是同样有一种情况不会发生,请看下图。
所以现在我们的公式就变成了这样,大大减小M的个数
现在我们给上面effective(N)一个称呼,叫做成长函数。也就是说,对于某一个输入D,H最多能够产生的多少种方程。注意是种类的数量。
这个所谓的种类我们也给一个定义叫做dichotomy,用来表示H对与D的二元分类情况。
好,现在问题的关键,就是H到底能把D分成多少个dichotomy。也就是它的成长函数到底是多少?
但是我们很难确定它的成长函数。但是好在我们拥有一个叫做break point的东西,这就是成长函数的上限。我们再看回上面分类的例子。
这里的输入为三个点就是一个break point。也就是说当输入N个点,H不能够把这个N个点的排列组合全部表示出来时(2^N),N就是一个break point。
当H能把N的全部组合表示出来时,说明这N个点被H给shatter掉了
我们用B(N,k)来表示当输入N个点时,H可以最多产生多少个dichotomy。
通过数学归纳法我们可以证明到
现在到了最后一步,除了把上边那个成长函数的上限代入进去之外,还需要进行一系列的变形,这些变形需要很强的数学能力和概率上面的知识,我自己都不太懂,况且我觉得大部分人都不需要了解。这里我就略过,有兴趣的强人自己google咯。
最终的式子如下
好了,现在我们终于能说机器学习确实可以学到东西了。但是需要满足三个条件。
这三者的关系如下图。
dvc = k - 1,大致上可以把它看出theta的维度加1
上图很清晰的说明,并不是说你的模型搞得很复杂,算法弄得很好,就能学好,反而是取到一个折中的点,这样的学习才最有效。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13