【连载3】如何使用spss做非参数检验
非参数检验是一个相当宏大的命题。由于实际情况的复杂多变,因此非参数检验包括了许多的各种各样的检验方法。之前我们提过,参数检验的使用条件是被检验的样本总体服从正态分布,而非参数检验的使用条件自然就是总体不服从或不确定是否服从正态分布。(实际上,这里要特别说明一下,尽管非参数检验的使用条件更宽松,但是考虑到精确性,不是特殊要求的话,我们还是尽可能的使用均值检验。)
比较常见的单样本非参数检验包括游程检验和单样本K-S检验。
游程检验:
它通常用于检测两个不同的观测值出现的次序是否具有随机性。举个例子,假如我们想知道每天来门诊就诊的人是否生病的次序是否随机,那么我们就使用游程检验。我们记录下来个案依次是否生病,比如是为1,否为0。然后我们就有了一个由0和1构成的变量列,
我们选择分析——非参数检验——旧对话框——游程,在主面板的检验变量列表里选入我们的0,1变量列。选项卡里边选择描述性,其他默认。割点可以全选。
输出结果看p值就可以了(我真的不想再重复怎么看p值了)。
单样本K-S检验;
这个就比较重要了。这个检验的目的在于观测样本的分布。哦,想想也知道很重要。只要我们想做相关和回归,那我们就最好用K-S检验来检查一下样本的分布。毕竟pearson相关系数有效的一个重要条件就是样本服从正态分布。
我们选择分析——非参数检验——旧对话框——1样本K-S,在主对话框的检验变量列表里边选入我们想检验分布的变量(比如一群病号的血细胞数),选项卡里勾选描述性和四分位数,其他默认。在检验分布的下边有四个供勾选的框框,这个要注意一下,常规指的就是正态分布,相等则是指均匀分布,勾选你想检验的分布(一般是正态分布)。确定以后就可以看结果了。
描述性统计量表会给你一些基本指标,帮助你感受这些数据。K-S检验表的p值会告诉你样本是否服从指定的分布,如果是的话,表里边还有一些其他的指标可以参考。
单样本非参数检验已经结束了(怎么这么少?),下边我们说一下独立样本非参数检验。
两独立样本非参数检验:
打开菜单分析——非参数检验——旧对话框——2个独立样本,在主面板里边检验变量选入检验变量,分组变量选入分组变量,选项卡中选入描述性,四分位数,其他默认。在检验类型里边有四个供勾选的框框,我们一一学习。
Mann-whitney 检验:
就是大名鼎鼎的秩和检验。
这个检验利用样本观察值得秩来推断两样本所在总体的分布是否相同(不晓得什么是秩的回去翻一遍你们的高数课本)。这是一个最常用的检验。举例,假设我们知道一组患病的人和不患病的人的血细胞数,想检查是否具有差异,那么我们就使用秩和检验,我保证没举错例子,这个例子确实也可以用独立样本t检验来做(希望大家还记得什么叫独立样本t检验),当然也可以用秩和检验来做。
它会给出描述性统计量,秩表,检验统计量表。在最后的一个表里边我们通过p值判断差异是否显著。
Moses极端反应检验:
它适用于实验条件导致两个不同方向的极端反应情况(多用于医学,比如有的药物会导致一部分病人好转的同时也会导致一部分病人恶化)。
它通过比较实验组和观察组,会告诉你是否产生了极端反应。(很神奇是不是?)
两样本K-S检验:
这个检验用来判断两个样本的分布是否相同。也是看p值哈。
Wald wolfowit游程检验:
用来检验两样本是否来自相同的总体。
注意:K-S检验适用于数值变量资料或者有序分类资料。
多个独立样本非参数检验:
打开菜单分析——非参数检验——旧对话框——K 独立检验,在主面板的检验变量选入想检验的变量,分组变量选入分组变量。
检验类型有三种
K-W检验:
用来判断各样本分别代表的总体是否一致,(相当于单因素方差分析),适用于数值变量和有序分类变量。结果会给出秩,检验统计量。通过p值判断差异性。若想在进行两两比较,那就要用到上边介绍的秩和检验来进行比较了。
中位数:
适用于数值变量资料。用来检验样本代表的总体中位数是不是相等。这个用途还是比较广泛的。
Jonckheere-Terpstra检验:
这个检验用来处理完全随机的资料,比如研究随着年龄增加,学习成绩是否也增加?这种有序分组的变量就用这个检验来检验。(我真有点懒得介绍这么冷门的检验的冲动,不过为了完整还是写一下吧。)
两相关样本非参数检验:
打开两个关联样本检验主面板,检验对里边选择两个相关变量,检验类型有四种。
Wilcoxon:
它用来检验两个变量的分布是否有差异。比较常用。比如一种药物治疗前和治疗后是否有差别?就用这个检验。
符号检验和wilcoxon差不多,也是检查差值的。
Mcnemar检验:
上边两个都是数值型的连续性资料,这个检验则用于配对计数资料,将两组人进行配对,观察他们的某个指标是否有差异。
边际同质性检验是mcnemar检验的一般化和扩展,用于多分类配对计数资料。比如检验甲观察的分类结果和乙观察的分类结果是否有差异。(分好多类)
多个相关样本非参数检验:
打开多个相关样本检验主面板,选入检验变量,检验类型一共有三种。
Friedman检验:
用于检验多个相关样本是否来自同一总体,是wilcoxon的扩展。
KendallW检验:
检验样本的一致性的好坏(不考虑分布的形状,仅考虑分布是否一致)。
Cochran Q检验:
用于二分数据时,是mcnemar检验的延伸,可以比较多个二分变量的比例的差异是否显著。
非参数检验大概就是这些内容了。和参数检验一样,这些检验的操作操作并不复杂,结果也不难判断,学习的难点在于记住这些不同的检验方法的适用的不同范围。需要多做一些练习,才可以巩固掌握住非参数检验的内容。CDA数据分析师培训
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21