回到本系列的第一篇文章机器学习从入门到放弃之KNN算法,在里面有这样的一个问题
黄点代表1类电影的分布,绿色代表0类电影的分布,紫色代表需要分类的电影样本。
那么该怎么判别紫色的那颗点所在的类别呢?
之前给出的是KNN算法,通过计算紫色点都周边的剧场的长短,来判断紫色点属于哪个类别。现在有这样一种极端情况,黄点和绿点在紫点周围呈圆周分布,距离一样,咋办?
图画得不是太好,大家理会我的意思就行。
在这种情况,假如像下图这样的情况,就容易处理得多了。
红线的下方是黄色种类,上方时绿色种类。
这种情况我们称之为线性分类,关于如何拟合出这条线程函数下面会讲述。现在先来说说,既然这叫线性分类,那么必然会有非线性的情况啊,那咋办呢?
没错,如果特征可以被线性函数全部表达,这自然是理想情况,但实际问题中更多的非线性分类。
这时,我们需要将线性函数转换为非线性函数。那怎么转换呢,很简单,将线性函数(假设叫z),扔到某一非线性函数f(x)内,得到新的表达式y = f(z),就是我们所需的非线性分类器了,而f(x)也就作激活函数,它有很多种,本文只介绍逻辑回归所使用到的sigmoid函数,其表达式是
其图像有一个漂亮的S型
可见在x的取值范围足够大的时候,其从0变1的过程可以忽略不计,因此,我们习惯的把>0.5归为1类,<0.5归为0类,那么恰好是0.5怎么办?这个概率是极低的,如果真的是0.5,那就随机归类,然后出门买张彩票吧,说不定就不用继续当程序员了。 (/≥▽≤/)
回到表达式上,可知函数的变量是z其余都是常量,所要要求解该分类函数的值,就是要确定z的值而z是线性方程,基本的数学知识不难知道,
$$z=a1x1+a2x2……an*xn$$
其中[x1……xn]是输入向量,所以训练的过程就是确定于[a1,a2……an]的值,使得该表达式对于多个输入向量的输出值正确率最高。
下面开始讲述求最佳的[a1,a2……an]的方法
显然,我们可以设计一个函数来衡量[a1,a2……an]是否最佳,比如说这样的
显然当J(a)达到最小值时,a的值最佳。方法如下,
初始化weight,可以使用随机值
代入式子得到err = y – predict
weight = weight + alpha * error * x_train[i],其中alpha称为学习速率,太小会影响函数的收敛速度,太大刚才就不收敛了。
为了解决上述问题,在《机器学习实战中》使用了动态更新alpha的方法,式子为alpha = 4/(1+i)+0.01
上述修改weight的过程称为梯度下降法,其中我故意略去了数学证明部分,需要的同学请自行查找专业资料。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20