电信业务领域的全面开放,激烈竞争使得目前的中国电信市场烽烟四起。“客户-产品-市场-利润”成为目前各电信运营商的基本发展思路。中国电信集团去年在全国推出营销分析系统,该系统具有主题分析、专题分析、统计报表等功能,基本解决了“发生了什么?”这个问题。但是,在海量的业务数据基础上,是否隐含着某些内在的商业规律,如何能够发现这些商业规律,做到有针对性营销,实现从数据到知识再到价值的提升呢?我们想到了数据挖掘技术。
数据挖掘(Data Mining,DM)是指从大量不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、有用的信息和知识的过程。
当前中国电信在一些省做MR的试点。MR主要采用聚类和预测挖掘技术,实现了客户分群模型和流失预测模型的建立和应用。通过客户分群模型,对客户进行细分,找出有相同特征的目标客户群,有针对性的进行营销;通过流失预测模型,锁定流失的高危客户,进行事前挽留,取得了一定的效果。本文主要想介绍一下数据挖掘的另一种应用——交叉销售模型(cross-sell model)。
在电信行业的今天,大量发展新的客户越来越困难,而且成本比较高,企业要做的不仅要挽留目前的客户,而且还必须通过有效的交叉销售和提升销售来最大化他们的价值。
交叉销售和提升销售提供预先集成的模式和流程来帮助您增加收入、预测各位客户的“下一步?交叉销售和提升销售让您能够描述购买了大量产品或产品升级的客户,然后您可以对其它客户应用类似的分析,以确定谁是最好的交叉销售和提升销售的目标客户。
交叉销售模型的两个阶段
制作交叉模型的两个阶段为:关联规则的创建和如何使用WEB表现方式展现,使用决策树进行目标客户的选取。本次挖掘的目的是希望发现目前选择多个套餐的客户在套餐组合方面是否有什么规律,哪些套餐容易被客户同时选择,并根据这个规律,发现可能选择这种组合的其它客户,然后对其进行重点的营销,提高营销的成功率,降低营销成本。
工具的选择
Clementine是ISL(Integral Solutions Limited)公司开发的数据挖掘工具平台。1999年SPSS公司收购了ISL公司,对Clementine产品进行重新整合和开发,现在Clementine已经成为SPSS公司的又一亮点。
作为一个数据挖掘平台,Clementine结合商业技术可以快速建立预测性模型,进而应用到商业活动中,帮助人们改进决策过程。强大的数据挖掘功能和显著的投资回报率使得Clementine在业界久负盛誉。它同那些仅注重模型的外在表现而忽略数据挖掘在整个业务流程中的应用价值的其它数据挖掘工具相比,优势十分明显。Clementine强大的数据挖掘算法,丰富的输出展现方式,贯穿业务流程的设计思路,可以帮助企业在缩短投资回报周期的同时极大地提高投资回报率。
数据的准备
数据的准备指在商业理解(而非技术理解)的基础上进行数据的抽取、转换、装载工作。这要求挖掘人员对现有业务系统比较熟悉,而且必须具有一定的数据汇总工作能力。
数据源的分析
在分析过程中主要有二方面:客户的电信消费属性,客户的人口统计学等社会学属性 。一般来讲,客户的电信消费属性在电信运营商的系统上是较为完整的,可以从计费系统、营销渠道系统、网间结算系统、10000号系统、智能网系统等得到客户的通话详单、账单、客户服务记录信息,运营商只要从客户的所有电信消费角度进行整理,就可以得到其电信消费属性。基于客户人口统计学等社会学属性的分析,对电信企业的经营决策很有价值,但很难做到,主要原因是基础数据缺乏。决策分析所需要的客户社会学属性包括地理因素、人口因素、心理因素、行为因素等很难取得。分析这些因素对电信运营商的市场营销决策有着重要作用,因而需要通过各种方式和渠道收集这些数据。目前,电信运营商解决这个问题的办法主要有两个:一是对客户进行普查,其工作量和难度相当大;二是通过积分奖励等措施搜集部分高消费客户的社会属性资料。
挖掘信息的内容
在挖掘所使用的信息中,我们主要包括三部分:客户详细描述,客户选择的套餐,客户的消费行为。(见下表)
现在我们找出了客户喜欢交叉选择的套餐,但是我们不知道哪些客户喜欢进行这样的交叉选择,下来采用决策树算法来进行目标客户群的锁定。(见下图)
总结
交叉销售模型不仅可以使用在用户套餐的交叉选择上,还可以指导客户经理进行新产品的推广。该案例的演示,说明了交叉销售模型的创建流程,指导市场营销策略的制定,最终可以提升客户的价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30