用实例告诉你,如何对产品进行数据分析
数据分析的核心并不在于数据本身,而在于设计有意义、有价值的数据指标,通过科学有效的手段去分析,进而发现问题优化迭代。数据分析因价值而存在,数据分析本就是一个价值增量的过程。
数据分析三个核心要点:
第一个问题就不多赘述了,重点实例解析第二、三个问题。数据分析的缘由/出发点很复杂,甚至有时候让人很焦灼,因为不同用户数据分析的出发点及分析过是完全不一样的。站在一个更高视角分析数据,或者说数据分析的维度不仅限于产品思维概念上的数据需要,而是一个关乎产品一体性的命题。
下面将逐一以实例的形式解读数据分析的两个核心问题,大致分为以下几步:
企查查APP现阶段笔者从事征信行业的产品工作,正在参与一款企业信用信息查询APP V2.x的升级迭代。此次的该类分析过程侧重数据指标制定和建模的过程,而并非实际数据的展示(别人家的应用,没有办法拿到完整的数据源)。再次强调,数据指标的制定远比数据分析过程要重要的多或者说更加富有创造性。
1.商业模式/盈利方式分析
免费增值模式,先做成流量的入口,后期分享流量红利扩大转化率。
2.了解产品现状/定量分析产品
2.1 用户分析
用户规模:
用户群体按照群体大致分为个人、企业,分析出个人和企业用户的人数比例,明确整体的用户分布情况。
每月/日/日的新增用户、流失用户、回流用户的比例的走势,选择恰当的走势变化渠道;
用户质量:产品粘性及病毒性的反应,体现在用户的活跃度上,一般包括,日活跃(DAU)、周活跃(WAU)、月活跃(MAU);
采用同期群和用户分类的分析方法,特定用户群体的特定分析过程,用户质量也是渠道或营销活动效果的间接体现,以便后期及时的调整和处理;
用户质量的标准制定,包括忠诚用户、联系活跃用户、流失用户等等,为反应不同指标设置特定的用户质量指标;
2.2 应用分析:
启动次数,某日/周/月的启动次数占所选时段总启动次数的比例,直接反应用的生活时间成本;
版本分布,对开发和维护的意义非常深刻,展示累计用户排名前10的各个版本变化趋势,可以帮助了解每个版本的新增用户,最新版本的升级情况,目前的哪些版本状况;
使用情况,统计周期内,一次启动的使用时长;一天内启动应用的次数;用统一用户相邻两次启动间隔的时间长度;
设备终端和错误分析也是很有必要的;
2.3 行业分析:
a. 行业数据可以帮助了解行业内应用的整体水平,可以查看应用的全体应用或同类应用中各个指标的数据、排名及趋势,有助于衡量应用的质量和表现;
b. 了解行业数据,可以知道自己的APP在整个行业的水平,可以从新增用户、活跃用户、启动次数、使用时长等多个维度去对比自己产品与行业平均水平的差异以及自己产品的对应的指标在整个行业的排名,从而知道自己产品的不足之处。
以上并没有对具体的数据源实施实质性的分析并结论,这部分的都是基本的处理过程就不做赘述。
业务场景:
1. 查首页支持企业名称、人名、品牌名等信息的模糊查询,并且在搜索系统之下直接提供四个维度[企业名称]、[股东高管]、[经营范围]、[品牌管理]的一级辅助搜索条件。
2. 企业信息维度算是一款企业信息服务平台的资源性优势,也是一款内容应用的核心模块。不同类型的用用户对不同类型的信息的感兴趣程度都存在个性化的特征,而用户行为特征数据的记录和挖掘是一件意义非凡的事情。
产品分析:
数据指标:
1. 不同检索维度的搜索量;
结论:以信息检索维度的搜索量,选出哪些企业信息搜索维度置于条件搜索中,并决定其分布的顺序和位置;
2. 不同描述维度的查询量
结论:
a. 以信息描述维度的查询次数,区分哪些企业信息描述维度置于的受关注程度,量化区分不同信息的关注度和用户价值;
b. 交叉分析不同维度的信息,用户属性,比如:行业+查询维度,综合分析不同特征的用户群的核心关注点。该类信息的分析挖掘有利于新产品的创新和尝试,比如精简版企业信用报告,”体量最小化,价值最大化”,不错的产品尝试和良好的用户体验;
c. 内容受欢迎程度及需求的迫切程度,面向不同类型的用户,比如:普通用户、企业用户(行业细分——P2P、银行、VC、海关、政务等等),内容分级、资源分层更好地配合免费增值模式、会员等级产品形态。正对不同用户特征给予不同的需求满足形式都是值得尝试和探索的,单一、传统的直销的商业模式或许有被迭代升级的可能;
数据分析很简单,并不是大家所描述地那样神秘不可破。产品数据分析意义在于指导产品设计,传达感性认知背后的理性意义。斗胆分享以下我个人的数据分析理念(关键字):
产品阶段
分析目的
商业模式
产品形态
无论数据分析的结论积极还是负面,都是产品价值映射,必须投以客观的态度。数据分析是验证产品设想的最具说服力的工具,但忽略数据分析背后的人性和商业思考,那么数据分析也就在根本上失去了意义。
管理学大师彼得.德鲁克说过:你无法衡量的东西,你也无法管理。数据分析可以有效的制衡产品经理本身的那种内在妄想,通过数据分析能帮助我们找到更加合适的产品和市场,甚至说缔造出一个更加可持续、可复制、持续在增长的商业模式。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-30